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Chapter 2
AI Methods

This chapter presents a number of basic AI methods that are commonly used in
games, and which will be discussed and referred to in the remainder of this book.
These are methods that are frequently covered in introductory AI courses—if you
have taken such a course, it should have exposed you to at least half of the methods
in this chapter. It should also have prepared you for easily understanding the other
methods covered in this chapter.

As noted previously, this book assumes that the reader is already familiar with
core AI methods at the level of an introductory university course in AI. Therefore,
we recommend you to make sure that you are at least cursorily familiar with the
methods presented in this chapter before proceeding to read the rest of the book. The
algorithm descriptions in this chapter are high-level descriptions meant to refresh
your memory if you have learned about the particular algorithm at some previous
point, or to explain the general idea of the algorithm if you have never seen it before.
Each section comes with pointers to the literature, either research papers or other
textbooks, where you can find more details about each method.

In this chapter we divide the relevant parts of AI (for the purposes of the book)
into six categories: ad-hoc authoring, tree search, evolutionary computation, super-
vised learning, reinforcement learning and unsupervised learning. In each section
we discuss some of the main algorithms in general terms, and give suggestions for
further reading. Throughout the chapter we use the game of Ms Pac-Man (Namco,
1982) (or Ms Pac-Man for simplicity) as an overarching testbed for all the algo-
rithms we cover. For the sake of consistency, all the methods we cover are employed
to control Ms Pac-Man’s behavior even though they can find a multitude of other
uses in this game (e.g., generating content or analyzing player behavior). While
a number of other games could have been used as our testbed in this chapter, we
picked Ms Pac-Man for its popularity and its game design simplicity as well as for
its high complexity when it comes to playing the game. It is important to remember
that Ms Pac-Man is a non-deterministic variant of its ancestor Pac-Man (Namco,
1980) which implies that the movements of ghosts involve a degree of randomness.

In Section 2.1, we go through a quick overview of two key overarching compo-
nents of all methods in this book: representation and utility. Behavior authoring,
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30 Chapter 2. AI Methods

covered in Section 2.2, refers to methods employing static ad-hoc representations
without any form of search or learning such as finite state machines, behavior trees
and utility-based AI. Tree search, covered in Section 2.3, refers to methods that
search the space of future actions and build trees of possible action sequences, often
in an adversarial setting; this includes the Minimax algorithm, and Monte Carlo tree
search. Covered in Section 2.4, evolutionary computation refers to population-
based global stochastic optimization algorithms such as genetic algorithms, or evo-
lution strategies. Supervised learning (see Section 2.5) refers to learning a model
that maps instances of datasets to target values such as classes; target values are
necessary for supervised learning. Common algorithms used here are backpropaga-
tion (artificial neural networks), support vector machines, and decision tree learning.
Reinforcement learning is covered in Section 2.6 and refers to methods that solve
reinforcement learning problems, where a sequence of actions is associated with
positive or negative rewards, but not with a “target value” (the correct action). The
paradigmatic algorithm here is temporal difference (TD) learning and its popular in-
stantiation Q-learning. Section 5.6.3 outlines unsupervised learning which refers
to algorithms that find patterns (e.g., clusters) in datasets that do not have target
values. This includes clustering methods such as k-means, hierarchical clustering
and self-organizing maps as well as frequent pattern mining methods such as Apri-
ori and generalized sequential patterns. The chapter concludes with a number of
notable algorithms that combine elements of the algorithms above to yield hybrid
methods. In particular we cover neuroevolution and TD learning with ANN function
approximation as the most popular hybrid algorithms used in the field of game AI.

2.1 General Notes

Before detailing each of the algorithm types we outline two overarching elements
that bind together all the AI methods covered in this book. The former is the algo-
rithm’s representation; the second is its utility. On the one hand, any AI algorithm
somehow stores and maintains knowledge obtained about a particular task at hand.
On the other hand, most AI algorithms seek to find better representations of knowl-
edge. This seeking process is driven by a utility function of some form. We should
note that the utility is of no use solely in methods that employ static knowledge
representations such as finite state machines or behavior trees.

2.1.1 Representation

Appropriately representing knowledge is a key challenge for artificial intelligence
at large and it is motivated by the capacity of the human brain to store and retrieve
obtained knowledge about the world. The key questions that drive the design of
representations for AI are as follows. How do people represent knowledge and how
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can AI potentially mimic that capacity? What is the nature of knowledge? How
generic can a representation scheme be? General answers to the above questions,
however, are far from trivial at this point.

As a response to the open general questions regarding knowledge and its repre-
sentation, AI has identified numerous and very specific ways to store and retrieve
information which is authored, obtained, or learned. The representation of knowl-
edge about a task or a problem can be viewed as the computational mapping of the
task under investigation. On that basis, the representation needs to store knowledge
about the task in a format that a machine is able to process, such as a data structure.

To enable any form of artificial intelligence knowledge needs to be represented
computationally and the ways this can happen are many. Representation types in-
clude grammars such as grammatical evolution, graphs such as finite state ma-
chines or probabilistic models, trees such as decision trees, behavior trees and ge-
netic programming, connectionism such as artificial neural networks, genetic such
as genetic algorithms and evolutionary strategies and tabular such as temporal dif-
ference learning and Q-learning. As we will see in the remainder of this book, all
above representation types find dissimilar uses in games and can be associated with
various game AI tasks.

One thing is certain for any AI algorithm that is tried on a particular task: the
chosen representation has a major impact on the performance of the algorithm. Un-
fortunately, the type of representation to be chosen for a task follows the no free
lunch theorem [756], suggesting that there is no single representation type which
is ideal for the task at hand. As a general set of guidelines, however, the repre-
sentation chosen should be as simple as possible. Simplicity usually comes as a
delicate balance between computational effort and algorithm performance as either
being over-detailed or over-simplistic will affect the performance of the algorithm.
Furthermore, the representation chosen should be as small as possible given the
complexity of the task at hand. Neither simplicity nor size are trivial decisions to
make with respect to the representation. Good representations come with sufficient
practical wisdom and empirical knowledge about the complexity and the qualitative
features of the problem the AI is trying to solve.

2.1.2 Utility

Utility in game theory (and economics at large) is a measure of rational choice
when playing a game. In general, it can be viewed as a function that is able to assist
a search algorithm to decide which path to take. For that purpose, the utility function
samples aspects of the search space and gathers information about the “goodness”
of areas in the space. In a sense, a utility function is an approximation of the so-
lution we try to find. In other words, it is a measure of goodness of the existing
representation we search through.

Similar concepts to the utility include the heuristic used by computer science
and AI as an approximate way to solve a problem faster when exact methods are too
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slow to afford, in particular associated with the tree search paradigm. The concept
of fitness is used similarly as a utility function that measures the degree to which a
solution is good, primarily, in the area of evolutionary computation. In mathematical
optimization, the objective, loss, cost, or error function is the utility function to be
minimized (or maximized if that is the objective). In particular, in supervised learn-
ing the error function represents how well an approach maps training examples to
target (desired) outputs. In the area of reinforcement learning and Markov decision
processes instead, the utility is named reward, which is a function an agent attempts
to maximize by learning to take the right action in a particular state. Finally, in the
area of unsupervised learning utility is often provided internally and within the
representation via e.g., competitive learning or self-organization.

Similarly to selecting an appropriate representation, the selection of a utility
function follows the no free lunch theorem. A utility is generally difficult to de-
sign and sometimes the design task is basically impossible. The simplicity of its de-
sign pays off, but the completeness as well. The quality of a utility function largely
depends on thorough empirical research and practical experience, which is gained
within the domain under investigation.

2.1.3 Learning = Maximize Utility (Representation)

The utility function is the drive for search and essential for learning. On that basis,
the utility function is the training signal of any machine learning algorithm as it
offers a measure of goodness of the representation we have. Thereby it implicitly
provides indications on what to do to further increase the current goodness of the
presentation. Systems that do not require learning (such as AI methods that are based
on ad-hoc designed representations; or expert-knowledge systems) do not require a
utility. In supervised learning the utility is sampled from data—i.e., good input-
output patterns. In reinforcement learning and evolutionary computation, instead,
the training signal is provided by the environment—i.e., rewards for doing some-
thing well and punishments for doing something wrong. Finally, in unsupervised
learning the training signal derives from the internal structure of the representation.

2.2 Ad-Hoc Behavior Authoring

In this section we discuss the first, and arguably the most popular, class of AI
methods for game development. Finite state machines, behavior trees and utility-
based AI are ad-hoc behavior authoring methods that have traditionally dominated
the control of non-player characters in games. Their dominance is evident by the fact
that the term game AI in the game development scene is still nowadays synonymous
with the use of these methods.
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2.2.1 Finite State Machines

A Finite State Machine (FSM) [230]—and FSM variants such as hierarchical
FSMs—is the game AI method that dominated the control and decision making
processes of non-player characters in games up until the mid-2000s.

FSMs belong to the expert-knowledge systems area and are represented as
graphs. An FSM graph is an abstract representation of an interconnected set of ob-
jects, symbols, events, actions or properties of the phenomenon that needs to be ad-
hoc designed (represented). In particular, the graph contains nodes (states) which
embed some mathematical abstraction and edges (transitions) which represent a
conditional relationship between the nodes. The FSM can only be in one state at
a time; the current state can change to another if the condition in the corresponding
transition is fulfilled. In a nutshell, an FSM is defined by three main components:

• A number of states which store information about a task—e.g., you are currently
on the explore state.

• A number of transitions between states which indicate a state change and are
described by a condition that needs to be fulfilled—e.g., if you hear a fire shot,
move to the alerted state.

• A set of actions that need to be followed within each state—e.g., while in the
explore state move randomly and seek opponents.

FSMs are incredibly simple to design, implement, visualize, and debug. Further
they have proven they work well with games over the years of their co-existence.
However, they can be extremely complex to design on a large scale and are, thereby,
computationally limited to certain tasks within game AI. An additional critical lim-
itation of FSMs (and all ad-hoc authoring methods) is that they are not flexible and
dynamic (unless purposely designed). After their design is completed, tested and
debugged there is limited room for adaptivity and evolution. As a result, FSMs end
up depicting very predictable behaviors in games. We can, in part, overcome such a
drawback by representing transitions as fuzzy rules [532] or probabilities [109].

2.2.1.1 An FSM for Ms Pac-Man

In this section we showcase FSMs as employed to control the Ms Pac-Man agent.
A hypothetical and simplified FSM controller for Ms Pac-Man is illustrated in Fig.
2.1. In this example our FSM has three states (seek pellets, chase ghosts and evade
ghosts) and four transitions (ghosts flashing, no visible ghost, ghost in sight, and
power pill eaten). While in the seek pellets state, Ms Pac-Man moves randomly
up until it detects a pellet and then follows a pathfinding algorithm to eat as many
pellets as possible and as soon as possible. If a power pill is eaten, then Ms Pac-
Man moves to the chase ghosts state in which it can use any tree-search algorithm
to chase the blue ghosts. When the ghosts start flashing, Ms Pac-Man moves to the
evade ghosts state in which it uses tree search to evade ghosts so that none is visible
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Fig. 2.1 A high-level and simplified FSM example for controlling Ms Pac-Man.

within a distance; when that happens Ms Pac-Man moves back to the seek pellets
state.

2.2.2 Behavior Trees

A Behavior Tree (BT) [110, 112, 111] is an expert-knowledge system which, simi-
larly to an FSM, models transitions between a finite set of tasks (or behaviors). The
strength of BTs compared to FSMs is their modularity: if designed well, they can
yield complex behaviors composed of simple tasks. The main difference between
BT and FSMs (or even hierarchical FSMs) is that they are composed of behaviors
rather than states. As with finite state machines, BTs are easy to design, test and
debug, which made them dominant in the game development scene after their suc-
cessful application in games such as Halo 2 (Microsoft Game Studios, 2004) [291]
and Bioshock (2K Games, 2007).

BT employs a tree structure with a root node and a number of parent and cor-
responding child nodes representing behaviors—see Fig. 2.2 for an example. We
traverse a BT starting from the root. We then activate the execution of parent-child
pairs as denoted in the tree. A child may return the following values to the parent
in predetermined time steps (ticks): run if the behavior is still active, success if the
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behavior is completed, failure if the behavior failed. BTs are composed of three
node types: the sequence, the selector, and the decorator the basic functionality of
which is described below:

• Sequence (see blue rectangle in Fig. 2.2): if the child behavior succeeds, the
sequence continues and eventually the parent node succeeds if all child behaviors
succeed; otherwise the sequence fails.

• Selector (see red rounded rectangle in Fig. 2.2): there are two main types of
selector nodes: the probability and the priority selectors. When a probability se-
lector is used child behaviors are selected based on parent-child probabilities set
by the BT designer. On the other hand if priority selectors are used, child behav-
iors are ordered in a list and tried one after the other. Regardless of the selector
type used, if the child behavior succeeds the selector succeeds. If the child be-
havior fails, the next child in the order is selected (in priority selectors) or the
selector fails (in probability selectors).

• Decorator (see purple hexagon in Fig. 2.2): the decorator node adds complex-
ity to and enhances the capacity of a single child behavior. Decorator examples
include the number of times a child behavior runs or the time given to a child
behavior to complete the task.

Compared to FSM, BTs are more flexible to design and easier to test; they still
however suffer from similar drawbacks. In particular, their dynamicity is rather low
given that they are static knowledge representations. The probability selector nodes
may add to their unpredictability and methods to adapt their tree structures have
already shown some promise [385]. There is also a certain degree of similarity be-
tween BTs and ABL (A Behavior Language) [440] introduced by Mateas and Stern
for story-based believable characters; their dissimilarities have also been reported
[749]. Note however that this section barely scratches the surface of what is possi-
ble with BT design as there are several extensions to their basic structure that help
BTs improve on their modularity and their capacity to deal with more complex be-
havior designs [170, 627].

2.2.2.1 A BT for Ms Pac-Man

Similarly to the FSM example above we use Ms Pac-Man to demonstrate the use
of BTs in a popular game. In Fig. 2.3 we illustrate a simple BT for the seek pellets
behavior of Ms Pac-Man. While in the seek pellets sequence behavior Ms Pac-Man
will first move (selector), it will then find a pellet and finally it will keep eating
pellets until a ghost is found in sight (decorator). While in the move behavior—
which is a priority selector—Ms Pac-Man will prioritize ghost-free corridors over
corridors with pellets and over corridors without pellets.
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Fig. 2.2 A behavior tree example. The root of the BT is a sequence behavior (attack enemy) which
executes the child behaviors spot enemy, select weapon, aim and shoot in sequence from left to
right. The select weapon behavior is a probability selector giving higher probability—denoted by
the thickness of the parent-child connecting lines—to the mini gun (0.5) compared to the rocket
launcher (0.3) or the pistol (0.2). Once in the shoot behavior the decorator until health = 0 requests
the behavior to run until the enemy dies.

Fig. 2.3 A BT example for the seek pellets behavior of Ms Pac-Man.



2.3. Tree Search 39

of states, behaviors or utility functions. It is possible, however, to create dynamic
variants of those by adding non-deterministic or fuzzy elements; for instance, one
may employ fuzzy transitions in an FSM or evolve behaviors in a BT. Further, it
is important to note that these ad-hoc designed architectures can feature any of the
methods this book covers in the remainder of this chapter. Basic processing elements
such as an FSM state, a BT behavior or a utility function or even more complex
hierarchies of nodes, trees or functions can be replaced by any other AI method
yielding hybrid algorithms and agent architectures. Note that possible extensions of
the algorithms can be found in the work we cite in the corresponding section of each
algorithm but also in the reading list we provide next.

2.2.4 Further Reading

Further details on how to build and test FSMs and hierarchical FSMs can be found
in [367]. For behavior trees we recommend the online tutorials and blogposts of
A. Champandard found at the http://aigamedev.com/ portal [110, 111] and recent
adaptations of the basic behavior tree structure as in [627]. Finally, the book of
Dave Mark [425] is a good starting point for the study of utility-based AI and its
application to control and decision making in games.

When it comes to software, a BT tool has been integrated within the Unreal En-
gine1 while several other BT Unity tools2 are available for the interested reader.
Further, the Behave system3 streamlines the iterative process of designing, integrat-
ing and debugging behavior trees and utility-based AI.

2.3 Tree Search

It has been largely claimed that most, if not all, of artificial intelligence is really just
search. Almost every AI problem can be cast as a search problem, which can be
solved by finding the best (according to some measure) plan, path, model, function,
etc. Search algorithms are therefore often seen as being at the core of AI, to the
point that many textbooks (such as Russell and Norvig’s famous textbook [582])
start with a treatment of search algorithms.

The algorithms presented below can all be characterized as tree search algo-
rithms as they can be seen as building a search tree where the root is the node
representing the state where the search starts. Edges in this tree represent actions
the agent takes to get from one state to another, and nodes represent states. Because
there are typically several different actions that can be taken in a given state, the tree

1 https://docs.unrealengine.com/latest/INT/Engine/
2 For instance, see http://nodecanvas.paradoxnotion.com/ or http://www.opsive.com/.
3 http://eej.dk/community/documentation/behave/0-Introduction.html

Mirosław Ochodek
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branches. Tree search algorithms mainly differ in which branches are explored and
in what order.

2.3.1 Uninformed Search

Uninformed search algorithms are algorithms which search a state space without
any further information about the goal. The basic uninformed search algorithms are
commonly seen as fundamental computer science algorithms, and are sometimes
not even seen as AI.

Depth-first search is a search algorithm which explores each branch as far as
possible before backtracking and trying another branch. At every iteration of its
main loop, depth-first search selects a branch and then moves on to explore the
resulting node in the next iteration. When a terminal node is reached—one from
which it is not possible to advance further—depth-first search advances up the list
of visited nodes until it finds one which has unexplored actions. When used for
playing a game, depth-first search explores the consequences of a single move until
the game is won or lost, and then goes on to explore the consequences of taking a
different move close to the end states.

Breadth-first search does the opposite of depth-first search. Instead of exploring
all the consequences of a single action, breadth-first search explores all the actions
from a single node before exploring any of the nodes resulting from taking those
actions. So, all nodes at depth one are explored before all nodes at depth two, then
all nodes at depth three, etc.

While the aforementioned are fundamental uninformed search algorithms, there
are many variations and combinations of these algorithms, and new uninformed
search algorithms are being developed. More information about uninformed search
algorithms can be found in Chapter 4 of [582].

It is rare to see uninformed search algorithms used effectively in games, but there
are exceptions such as iterative width search [58], which does surprisingly well in
general video game playing, and the use of breadth-first search to evaluate aspects
of strategy game maps in Sentient Sketchbook [379]. Also, it is often illuminating to
compare the performance of state-of-the-art algorithms with a simple uninformed
search algorithm.

2.3.1.1 Uninformed Search for Ms Pac-Man

A depth-first approach in Ms Pac-Man would normally consider the branches of
the game tree until Ms Pac-Man either completes the level or loses. The outcome
of this search for each possible action would determine which action to take at a
given moment. Breadth-first instead would first explore all possible actions of Ms
Pac-Man at the current state of the game (e.g., going left, up, down or right) and
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would then explore all their resulting nodes (children) and so on. The game tree of
either method is too big and complex to visualize within a Ms Pac-Man example.

2.3.2 Best-First Search

In best-first search, the expansion of nodes in the search tree is informed by some
knowledge about the goal state. In general, the node that is closest to the goal state
by some criterion is expanded first. The most well-known best-first search algorithm
is A* (pronounced A star). The A* algorithm keeps a list of “open” nodes, which
are next to an explored node but which have not themselves been explored. For each
open node, an estimate of its distance from the goal is made. New nodes are chosen
to explore based on a lowest cost basis, where the cost is the distance from the origin
node plus the estimate of the distance to the goal.

A* can easily be understood as navigation in two- or three-dimensional space.
Variants of this algorithm are therefore commonly used for pathfinding in games.
In many games, the “AI” essentially amounts to non-player characters using A*
pathfinding to traverse scripted points. In order to cope with large, deceptive spaces
numerous modifications of this basic algorithm have been proposed, including hier-
archical versions of A* [61, 661], real-time heuristic search [82], jump point search
for uniform-cost grids [246], 3D pathfinding algorithms [68], planning algorithms
for dynamic game worlds [495] that enable the animation of crowds in collision-
free paths [631] and approaches for pathfinding in navigation meshes [68, 722]. The
work of Steve Rabin and Nathan Sturtevant on grid-based pathfinding [551, 662]
and pathfinding architectures [550] are notable examples. Sturtevant and colleagues
have also been running a dedicated competition to grid-based path-planning [665]
since 2012.4 For the interested reader Sturtevant [663] has released a list of bench-
marks for grid-based pathfinding in games5 including Dragon Age: Origins (Elec-
tronic Arts, 2009), StarCraft (Blizzard Entertainment, 1998) and Warcraft III: Reign
of Chaos (Blizzard Entertainment, 2002).

However, A* can also be used to search in the space of game states, as opposed
to simply searching physical locations. This way, best-first search can be used for
planning rather than just navigation. The difference is in taking the changing state
of the world (rather than just the changing state of a single agent) into account.
Planning with A* can be surprisingly effective, as evidenced by the winner of the
2009 Mario AI Competition—where competitors submitted agents playing Super
Mario Bros (Nintendo, 1985)—being based on a simple A* planner that simply
tried to get to the right end of the screen at all times [717, 705] (see also Fig. 2.5).

4 http://movingai.com/GPPC/
5 http://movingai.com/benchmarks/
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Fig. 2.5 The A* controller of the 2009 Mario AI Competition champion by R. Baumgarten [705].
The red lines illustrate possible future trajectories considered by the A* controller of Mario, taking
the dynamic nature of the game into account.

2.3.2.1 Best-First Search for Ms Pac-Man

Best-first search can be applicable in Pac-Man in the form of A*. Following the
paradigm of the 2009 Mario AI competition champion, Ms Pac-Man can be con-
trolled by an A* algorithm that searches through possible game states within a short
time frame and takes a decision on where to move next (up, down, left or right).
The game state can be represented in various ways: from a very direct, yet costly,
representation that takes ghost and pellet coordinates into account to an indirect rep-
resentation that considers the distance to the closest ghost or pellet. Regardless of
the representation chosen, A* requires the design of a cost function that will drive
the search. Relevant cost functions for Ms Pac-Man would normally reward moves
to areas containing pellets and penalizing areas containing ghosts.

2.3.3 Minimax

For single-player games, simple uninformed or informed search algorithms can be
used to find a path to the optimal game state. However, for two-player adversarial
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games, there is another player that tries to win as well, and the actions of each
player depend very much on the actions of the other player. For such games we
need adversarial search, which includes the actions of two (or more) adversarial
players. The basic adversarial search algorithm is called Minimax. This algorithm
has been used very successfully for playing classic perfect-information two-player
board games such as Checkers and Chess, and was in fact (re)invented specifically
for the purpose of building a Chess-playing program [725].

The core loop of the Minimax algorithm alternates between player 1 and player
2—such as the white and black player in Chess—named the min and the max player.
For each player, all possible moves are explored. For each of the resulting states,
all possible moves by the other player are also explored, and so on until all the
possible combinations of moves have been explored to the point where the game
ends (e.g., with a win, a loss or a draw). The result of this process is the generation
of the whole game tree from the root node down to the leaves. The outcome of the
game informs the utility function which is applied onto the leaf nodes. The utility
function estimates how good the current game configuration is for a player. Then, the
algorithm traverses up the search tree to determine what action each player would
have taken at any given state by backing-up values from leaves through the branch
nodes. In doing so, it assumes that each player tries to play optimally. Thus, from
the standpoint of the max player, it tries to maximize its score, whereas min tries to
minimize the score of max; hence, the name Minimax. In other words, a max node of
the tree computes the max of its child values whereas a min node computes the min
of its child values. The optimal winning strategy is then obtained for max if, on min’s
turn, a win is obtainable for max for all moves that min can make. The corresponding
optimal strategy for min is when a win is possible independently of what move max
will take. To obtain a winning strategy for max, for instance, we start at the root of
the tree and we iteratively choose the moves leading to child nodes of highest value
(on min’s turn the child nodes with the lowest value are selected instead). Figure 2.6
illustrates the basic steps of Minimax through a simple example.

Of course, exploring all possible moves and countermoves is infeasible for any
game of interesting complexity, as the size of the search tree increases exponentially
with the depth of the game or the number of moves that are simulated. Indicatively,
tic-tac-toe has a game tree size of 9! = 362,880 states which is feasible to traverse
through; however, the Chess game tree has approximately 10154 nodes which is
infeasible to search through with modern computers. Therefore, almost all actual
applications of the Minimax algorithm cut off search at a given depth, and use a state
evaluation function to evaluate the desirability of each game state at that depth. For
example, in Chess a simple state evaluation function would be to merely sum the
number of white pieces on the board and subtract the number of black pieces; the
higher this number is, the better the situation is for the white player. (Of course,
much more sophisticated board evaluation functions are commonly used.) Together
with improvements to the basic Minimax algorithm such as a-b pruning and the
use of non-deterministic state evaluation functions, some very competent programs
emerged for many classic games (e.g., IBM’s Deep Blue). More information about
Minimax and other adversarial search algorithms can be found in Chapter 6 of [582].



44 Chapter 2. AI Methods

Fig. 2.6 An abstract game tree illustrating the Minimax algorithm. In this hypothetical game of
two options for each player max (represented as red squares) plays first, min (represented as blue
diamonds) plays second and then max plays one last time. White squares denote terminal nodes
containing a winning (positive), a losing (negative) or a draw (zero) score for the max player.
Following the Minimax strategy, the scores (utility) are traversed up to the root of the game tree.
The optimal play for max and min is illustrated in bold. In this simple example if both players play
optimally, max wins a score of 5.

2.3.3.1 Minimax for Ms Pac-Man

Strictly speaking, Minimax is not applicable to Ms Pac-Man as the game is non-
deterministic and, thus, the Minimax tree is formally unknown. (Of course Minimax
variants with heuristic evaluation functions can be eventually applicable.) Minimax
is however applicable to Ms Pac-Man’s deterministic ancestor, Pac-Man (Namco,
1980). Again strictly speaking, Pac-Man is a single-player adversarial game. As
such Minimax is applicable only if we assume that Pac-Man plays against adver-
saries (ghosts) who make optimal decisions. It is important to note that ghosts’
movements are not represented by tree nodes; instead, they are simulated based on
their assumed optimal play. Game tree nodes in Pac-Man may represent the game
state including the position of Pac-Man, the ghosts, and the current pellets and power
pills available. The branches of the Minimax tree are the available moves of the Pac-
Man in each game state. The terminal nodes can, for instance, feature either a binary
utility (1 if Pac-Man completes the level; 0 if Pac-Man was killed by a ghost) or the
final score of the game.
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2.3.4 Monte Carlo Tree Search

There are many games which Minimax will not play well. In particular, games with
a high branching factor (where there are many potential actions to take at any given
point in time) lead to Minimax that will only ever search a very shallow tree. An-
other aspect of games which frequently throws spanners in the works of Minimax
is when it is hard to construct a good state evaluation function. The board game Go
is a deterministic, perfect information game that is a good example of both of these
phenomena. Go has a branching factor of approximately 300, whereas Chess typi-
cally has around 30 actions to choose from. The positional nature of the Go game,
which is all about surrounding the adversary, makes it very hard to correctly esti-
mate the value of a given board state. For a long time, the best Go-playing programs
in the world, most of which were based on Minimax, could barely exceed the play-
ing strength of a human beginner. In 2007, Monte Carlo Tree Search (MCTS) was
invented and the playing strength of the best Go programs increased drastically.

Beyond complex perfect information, deterministic games such as Go, Chess and
Checkers, imperfect information games such a Battleship, Poker, Bridge and/or
non-deterministic games such as backgammon and monopoly cannot be solved via
Minimax due to the very nature of the algorithm. In such games, MCTS not only
overcomes the tree size limitation of Minimax but, given sufficient computation, it
approximates the Minimax tree of the game.

So how does MCTS handle high branching factors, lack of good state evaluation
functions, and lack of perfect information and determinism? To begin with, it does
not search all branches of the search tree to an even depth, instead it concentrates
on the more promising branches. This makes it possible to search certain branches
to a considerable depth even though the branching factor is high. Further, to get
around the lack of good evaluation functions, determinism and imperfect informa-
tion, the standard formulation of MCTS uses rollouts to estimate the quality of the
game state, randomly playing from a game state until the end of the game to see the
expected win (or loss) outcome. The utility values obtained via the random simu-
lations may be used efficiently to adjust the policy towards a best-first strategy (a
Minimax tree approximation).

At the start of a run of the MCTS algorithm, the tree consists of a single node rep-
resenting the current state of the game. The algorithm then iteratively builds a search
tree by adding and evaluating new nodes representing game states. This process can
be interrupted at any time, rendering MCTS an anytime algorithm. MCTS requires
only two pieces of information to operate: the game rules that would, in turn, yield
the available moves in the game and the terminal state evaluation—whether that is
win, a loss, a draw, or a game score. The vanilla version of MCTS does not require
a heuristic function, which is, in turn, a key advantage over Minimax.

The core loop of the MCTS algorithm can be divided into four steps: Selection,
Expansion (the first two steps are also known as tree policy), Simulation and Back-
propagation. The steps are also depicted in Fig. 2.7.
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Selection: In this phase, it is decided which node should be expanded. The
process starts at the root of the tree, and continues until a node is selected
which has unexpanded children. Every time a node (action) is to be selected
within the existing tree a child node j is selected to maximise the UCB1
formula:

UCB1 = X j +2Cp

s
2lnn

n j
(2.1)

where X j is the average reward of all nodes beneath this node, Cp is an ex-
ploration constant (often set to 1/

p
2), n is the number of times the parent

node has been visited, and n j is the number of times the child node j has
been visited. It is important to note that while UCB1 is the most popular for-
mula used for action selection it is certainly not the only one available. Be-
yond equation (2.1) other options include epsilon-greedy, Thompson sam-
pling, and Bayesian bandits. For instance, Thompson sampling selects ac-
tions stochastically based on their posterior probabilities of being optimal
[692].

Expansion: When a node is selected that has unexpanded children—i.e., that
represents a state from which actions can be taken that have not been at-
tempted yet—one of these children is chosen for expansion, meaning that a
simulation is done starting in that state. Selecting which child to expand is
often done at random.

Simulation (Default Policy): After a node is expanded, a simulation (or roll-
out) is done starting from the non-terminal node that was just expanded until
the end of game to produce a value estimate. Usually, this is performed by
taking random actions until a termination state is reached, i.e., until the game
is either won or lost. The state at the end of the game (e.g., �1 if losing, +1
if winning, but could be more nuanced) is used as the reward (D ) for this
simulation, and propagated up the search tree.

Backpropagation: The reward (the outcome of the simulation) is added to
the total reward X of the new node. It is also “backed up”: added to the total
reward of its parent node, its parent’s parent and so on until the root of the
tree.

The simulation step might appear counter-intuitive—taking random actions seems
like no good way to play a game—but it provides a relatively unbiased estimate of
the quality of a game state. Essentially, the better a game state is, the more simu-
lations are likely to end up winning the game. At least, this is true for games like
Go where a game will always reach a terminal state within a certain relatively small
number of moves (400 for Go). For other games like Chess, it is theoretically pos-
sible to play an arbitrary number of moves without winning or losing the game.
For many video games, it is probable that any random sequence of actions will not
end the game unless some timer runs out, meaning that most simulations will be
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Fig. 2.7 The four basic steps of MCTS exemplified through one iteration of the algorithm. The
figure is a recreation of the corresponding MCTS outline figure by Chaslot et al. [118].

very long (tens or hundreds of thousands of steps) and not yield useful information.
For example, in Super Mario Bros (Nintendo,1985), the application of random ac-
tions would most likely make Mario dance around his starting point until his time is
up [294]. In many cases it is therefore useful to complement the simulation step with
a state evaluation function (as commonly used in Minimax), so that a simulation is
performed for a set number of steps and if a terminal state is not reached a state
evaluation is performed in lieu of a win-lose evaluation. In some cases it might even
be beneficial to replace the simulation step entirely with a state evaluation function.

It is worth noting that there are many variations of the basic MCTS algorithm—it
may in fact be more useful to see MCTS as an algorithm family or framework rather
than a single algorithm.

2.3.4.1 MCTS for Ms Pac-Man

MCTS can be applicable to the real-time control of the Ms Pac-Man agent. There
are obviously numerous ways to represent a game state (and thereby a game tree
node) and design a reward function for the game, which we will not discuss in detail
here. In this section, instead, we will outline the approach followed by Pepels et al.
[524] given its success in obtaining high scores for Ms Pac-Man. Their agent, named
Maastricht, managed to obtain over 87,000 points and was ranked first (among 36
agents) in the Ms Pac-Man competition of the IEEE Computational Intelligence and
Games conference in 2012.

When MCTS is used for real-time decision making a number of challenges be-
come critical. First, the algorithm has limited rollout computational budget which
increases the importance of heuristic knowledge. Second, the action space can be
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Fig. 2.8 The junction-based representation of a game state for the Maastricht MCTS controller
[524]. All letter nodes refer to game tree nodes (decisions) for Ms Pac-Man. Imaged adapted from
[524] with permission from authors.

particularly fine-grained which suggests that macro-actions are a more powerful
way to model the game tree; otherwise the agent’s planning will be very short-term.
Third, there might be no terminal node in sight which calls for good heuristics and
possibly restricting the simulation depth. The MCTS agent of Pepels et al. [524]
managed to cope with all the above challenges of using MCTS for real-time control
by using a restricted game tree and a junction-based game state representation (see
Fig. 2.8).
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2.3.5 Further Reading

The basic search algorithms are well covered in Russell and Norvig’s classic AI
textbook [582]. The A* algorithm was invented in 1972 for robot navigation [247];
a good description of the algorithm can be found in Chapter 4 of [582]. There is
plenty of more advanced material on tailoring and optimizing this algorithm for
specific game problems in dedicated game AI books such as [546]. The different
components of Monte Carlo tree search [141] were invented in 2006 and 2007 in
the context of playing Go [142]; a good overview of and introduction to MCTS and
some of its variants is given in a survey paper by Browne et al. [77].

2.4 Evolutionary Computation

While tree search algorithms start from the root node representing an origin state,
and build a search tree based on the available actions, optimization algorithms do
not build a search tree; they only consider complete solutions, and not the path
taken to get there. As mentioned earlier in Section 2.1, all optimization algorithms
assume that there is something to optimize solutions for; there must be an objective,
alternatively called utility function, evaluation function or fitness function, which
can assign a numerical value (the fitness) to a solution, which can be maximized (or
minimized). Given a utility function, an optimization algorithm can be seen as an
algorithm that seeks in a search space solutions that have the highest (or lowest)
value of that utility.

A broad family of optimization algorithms is based on randomized variation of
solutions, where one or multiple solutions are kept at any given time, and new so-
lutions (or candidates, or search points; different terminology is used by different
authors) are created through randomly changing some of the existing solutions, or
maybe combining some of them. Randomized optimization algorithms which keep
multiple solutions are called evolutionary algorithms, by analogy with natural evo-
lution.

Another important concept when talking about optimization algorithms (and AI
at large as covered in Section 2.1) is their representation. All solutions are repre-
sented in some way, for example, as fixed-size vectors of real numbers, or variable-
length strings of characters. Generally, the same artifact can be represented in many
different ways; for example, when searching for a sequence of actions that solves a
maze, the action sequence can be represented in several different ways. In the most
direct representation, the character at step t determines what action to take at time
step t+1. A somewhat more indirect representation for a sequence of actions would
be a sequence of tuples, where the character at time step t decides what action to
take and the number t +n determines for how many time steps n to take that action.
The choice of representation has a big impact on the efficiency and efficacy of the
search algorithm, and there are several tradeoffs at play when making these choices.
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Optimization is an extremely general concept, and optimization algorithms are
useful for a wide variety of tasks in AI as well as in computing more generally.
Within AI and games, optimization algorithms such as evolutionary algorithms have
been used in many roles as well. In Chapter 3 we explain how optimization algo-
rithms can be used for searching for game-playing agents, and also for searching for
action sequences (these are two very different uses of optimization that are both in
the context of game-playing); in Chapter 4 we explain how we can use optimiza-
tion to create game content such as levels; and in Chapter 5 we discuss how to use
optimization to find player models.

2.4.1 Local Search

The simplest optimization algorithms are the local optimization algorithms. These
are so called because they only search “locally”, in a small part of the search space,
at any given time. A local optimization algorithm generally just keeps a single solu-
tion candidate at any given time, and explores variations of that solution.

The arguably simplest possible optimization algorithm is the hill climber. In
its most common formulation, which we can call the deterministic formulation, it
works as follows:

1. Initialization: Create a solution s by choosing a random point in search
space. Evaluate its fitness.

2. Generate all possible neighbors of s. A neighbor is any solution that differs
from s by at most a certain given distance (for example, a change in a single
position).

3. Evaluate all the neighbors with the fitness function.
4. If none of the neighbors has a better fitness score than s, exit the algorithm

and return s.
5. Otherwise, replace s with the neighbor that has the highest fitness value and

go to step 2.

The deterministic hill climber is only practicable when the representation is such
that each solution has a small number of neighbors. In many representations there
are an astronomically high number of neighbors. It is therefore preferable to use
variants of hill climbers that may guide the search effectively. One approach is the
gradient-based hill climber that follows the gradient towards minimizing a cost
function. That algorithmic approach trains artificial neural networks for instance
(see Section 2.5). Another approach that we cover here is the randomized hill
climber. This instead relies on the concept of mutation: a small, random change
to a solution. For example, a string of letters can be mutated by randomly flipping
one or two characters to some other character (see Fig. 2.9), and a vector of real
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(a) Mutation: A number of genes is selected to
be mutated with a small probability e.g., less
than 1%. The selected genes are highlighted
with a red outline at the top chromosome and
are mutated by flipping their binary value (red
genes) at the bottom chromosome.

(b) Inversion: Two positions in the offspring
are randomly chosen and the positions between
them—the gene sequence highlighted by a red
outline at the top chromosome—are inversed
(red genes) at the bottom chromosome.

Fig. 2.9 Two ways of mutating a binary chromosome. In this example we use a chromosome of
eleven genes. A chromosome is selected (top bit-string) and mutated (bottom bit-string).

numbers can be mutated by adding another vector to it drawn from a random dis-
tribution around zero, and with a very small standard deviation. Macro-mutations
such as gene inversion can also be applied as visualized in Fig. 2.9. Given a repre-
sentation, fitness function and mutation operator, the randomized hill climber works
as follows:

1. Initialization: Create a solution s by choosing a random point in the search
space. Evaluate its fitness.

2. Mutation: Generate an offspring s0 by mutating s.
3. Evaluation: Evaluate the fitness of s0.
4. Replacement: If s0 has higher fitness than s, replace s with s0.
5. Go to step 2.

While very simple, the randomized hill climber can be surprisingly effective. Its
main limitation is that it is liable to get stuck in local optima. A local optimum
is sort of a “dead end” in search space from which there is “no way out”; a point
from which there are no better (higher-fit) points within the immediate vicinity.
There are many ways of dealing with this problem. One is to simply restart the hill
climber at a new randomly chosen point in the search space whenever it gets stuck.
Another is simulated annealing, to accept moving to solutions with lower fitness
with a given probability; this probability gradually diminishes during the search. A
far more popular response to the problem of local optima is to keep not just a single
solution at any time, but a population of solutions.

2.4.1.1 Local Search for Ms Pac-Man

While we can think of a few ways one can apply local search in Ms Pac-Man we
outline an example of its use for controlling path-plans. Local search could, for
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instance, evolve short local plans (action sequences) of Ms Pac-Man. A solution
could be represented as a set of actions that need to be taken and its fitness could be
determined by the score obtained after following this sequence of actions.

2.4.2 Evolutionary Algorithms

Evolutionary algorithms are randomized global optimization algorithms; they are
called global rather than local because they search many points in the search space
simultaneously, and these points can be far apart. They accomplish this by keeping a
population of solutions in memory at any given time. The general idea of evolution-
ary computation is to optimize by “breeding” solutions: generate many solutions,
throw away the bad ones and keep the good (or at least less bad) ones, and create
new solutions from the good ones.

The idea of keeping a population is taken from Darwinian evolution by natural
selection, from which evolutionary algorithms also get their name. The size of the
population is one of the key parameters of an evolutionary algorithm; a population
size of 1 yields something like a randomized hill climber, whereas populations of
several thousand solutions are not unheard of.

Another idea which is taken from evolution in nature is crossover, also called re-
combination. This is the equivalent of sexual reproduction in the natural world; two
or more solutions (called parents) produce an offspring by combining elements of
themselves. The idea is that if we take two good solutions, a solution that is a com-
bination of these two—or intermediate between them—ought to be good as well,
maybe even better than the parents. The offspring operator is highly dependent on
the solution representation. When the solution is represented as a string or a vec-
tor, operators such as uniform crossover (which flips a fair coin and randomly picks
values from each parent for each position in the offspring) or one-point crossover
(where a position p in the offspring is randomly chosen, and values of positions be-
fore p are taken from parent 1 and values of positions after p are taken from parent
2) can be used. Crossover can be applied to any chromosome representation varying
from a bit-string to a real-valued vector. Figure 2.10 illustrates these two crossover
operators. It is in no way guaranteed, however, that the crossover operator generates
an offspring that is anything as highly fit as the parents. In many cases, crossover can
be highly destructive. If crossover is used, it is therefore important that the offspring
operator is chosen with care for each problem. Figure 2.11 illustrates this possibility
through a simple two-dimensional example.

The basic template for an evolutionary algorithm is as follows:

1. Initialization: The population is filled with N solutions created randomly,
i.e., random points in search space. Known highly-fit solutions can also be
added to this initial population.
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(a) 1-point crossover: The vertical line across
the two parents denotes the crossover point at
position p.

(b) Uniform crossover: To select genes from
each parent to form offspring the operator flips
a fair coin at each position of the chromosome.

Fig. 2.10 Two popular types of crossover used in evolutionary algorithms. In this example we
use a binary representation and a chromosome size of eleven genes. The two bit-strings used in
both crossover operators represent the two parents selected for recombination. Red and blue genes
represent the two different offspring emerged from each crossover operator. Note that the operators
are directly applicable to real-valued (floating point) representations too.

2. Evaluation: The fitness function is used to evaluate all solutions in the pop-
ulation and assign fitness values to them.

3. Parent selection: Based on fitness and possibly other criteria, such as dis-
tance between solutions, those population members that will be used for
reproduction are selected. Selection strategies include methods directly or
indirectly dependent on the fitness of the solutions, including roulette-wheel
(proportionally to fitness), ranking (proportionally to rank in population) and
tournament.

4. Reproduction: Offspring are generated through crossover from parents, or
through simply copying parent solutions, or some combination of these.

5. Variation: Mutation is applied to some or all of the parents and/or offspring.
6. Replacement: In this step, we select which of the parents and/or offspring

will make it to the next generation. Popular replacement strategies of the
current population include the generational (parents die; offspring replace
them), steady state (offspring replaces worst parent if and only if offspring
is better) and elitism (generational, but best x% of parents survive) ap-
proaches.

7. Termination: Are we done yet? Decide based on how many generations or
evaluations have elapsed (exhaustion), the highest fitness attained by any
solution (success), and/or some other termination condition.

8. Go to step 2.

Every iteration of the main loop (i.e., every time we reach step 2) is called a gen-
eration, keeping with the nature-inspired terminology. The total number of fitness
evaluations performed is typically proportional to the size of the population times
the number of generations.

This high-level template can be implemented and expanded in a myriad different
ways; there are thousands of evolutionary or evolution-like algorithms out there, and
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Fig. 2.11 An illustration of the mutation and crossover operators in a simplified two-dimensional
fitness landscape. The problem is represented by two real-valued variables (x1 and x2) that define
the two genes of the vector chromosome. The fitness landscape is represented by the contour lines
on the 2D plane. Chromosomes 1 and 2 are selected to be parents. They are recombined via 1-point
crossover (dotted arrows) which yields offspring 3 and 4. Both offspring are mutated (solid arrows)
to yield solutions 5 and 6. Operators that lead to poorer-fit or higher-fit solutions are, respectively,
depicted with green and red color.

many of them rearrange the overall flow, add new steps and remove existing steps.
In order to make this template a bit more concrete, we will give a simple example of
a working evolutionary algorithm below. This is a form of evolution strategy, one
of the main families of evolutionary algorithms. While the µ +l evolution strategy
is a simple algorithm that can be implemented in 10 to 20 lines of code, it is a
fully functional global optimizer and quite useful. The two main parameters are µ ,
which signifies the “elite” or the size of the part of the population that is kept every
generation, and l , the size of the part of the population that is re-generated every
generation.

1. Fill the population with µ +l randomly generated solutions.
2. Evaluate the fitness of all solutions.
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3. Sort the population by decreasing fitness, so that the lowest-numbered solu-
tions have highest fitness.

4. Remove the least fit l individuals.
5. Replace the removed individuals with copies of the µ best individuals.
6. Mutate the offspring.
7. Stop if success or exhaustion. Otherwise go to step 2.

Evolution strategies, the type of algorithms which the µ +l evolution strategy
above is a simple example of, are characterized by a reliance on mutation rather
than crossover to create variation, and by the use of self-adaptation to adjust mu-
tation parameters (though that is not part of the simple algorithm above). They are
also generally well suited to optimize artifacts represented as vectors of real num-
bers, so-called continuous optimization. Some of the very best algorithms for con-
tinuous optimization, such as the covariance matrix adaptation evolution strategy
(CMA-ES) [245] and the natural evolution strategy (NES) [753], are conceptual
descendants of this family of algorithms.

Another prominent family of evolutionary algorithms is genetic algorithms
(GAs). These are characterized by a reliance on crossover rather than mutation for
variation (some genetic algorithms have no mutation at all), fitness-proportional se-
lection and solutions being often represented as bit-strings or other discrete strings.
It should be noted, however, that the distinctions between different types of evolu-
tionary algorithms are mainly based on their historical origins. These days, there are
so many variations and such extensive hybridization that it often makes little sense
to categorize a particular algorithm as belonging to one or the other family.

A variant of evolutionary algorithms emerges from the need of satisfying par-
ticular constraints within which a solution is not only fit but also feasible. When
evolutionary algorithms are used for constrained optimization we are faced with a
number of challenges such as that mutation and crossover cannot preserve or guar-
antee the feasibility of a solution. It may very well be that a mutation or a recombi-
nation between two parents may yield an infeasible offspring. One approach to deal
with constraint handling is repair, which could be any process that turns infeasible
individuals into feasible ones. A second approach is to modify the genetic opera-
tors so that the probability of an infeasible individual to appear becomes smaller.
A popular approach is to merely penalize the existence of infeasible solutions by
assigning them low fitness values or, alternatively, in proportion to the number of
constraint violations. This strategy however may over-penalize the actual fitness of
a solution which in turn will result in its rapid elimination from the population. Such
a property might be undesirable and is often accused for the weak performance of
evolutionary algorithms on handling constraints [456]. As a response to this limi-
tation the feasible-infeasible 2-population (FI-2pop) algorithm [341] evolves two
populations, one with feasible and one with infeasible solutions. The infeasible pop-
ulation optimizes its members towards minimizing the distance from feasibility. As
the infeasible population converges to the border of feasibility, the likelihood of dis-
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covering new feasible individuals increases. Feasible offspring of infeasible parents
are transferred to the feasible population, boosting its diversity (and vice versa for
infeasible offspring). FI-2pop has been used in games on instances where we require
fit and feasible solutions such as well-designed and playable game levels [649, 379].

Finally, another blend of evolutionary algorithms considers more than one ob-
jective when attempting to find a solution to a problem. For many problems it is
hard to combine all requirements and specifications into a single objective mea-
sure. It is also often true that these objectives are conflicting; for instance, if our
objectives are to buy the fastest and cheapest possible laptop we will soon realize
the two objectives are partially conflicting. The intuitive solution is to merely add
the different objective values—as a weighted sum—and use this as your fitness un-
der optimization. Doing so, however, has several drawbacks such as the non-trivial
ad-hoc design of the weighting among the objectives, the lack of insight on the inter-
actions between the objectives (e.g., what is the price threshold above which faster
laptops are not more expensive?) and the fact that a weighted-sum single-objective
approach cannot reach solutions that achieve an optimal compromise among their
weighted objectives. The response to these limitations is the family of algorithms
known as multiobjective evolutionary algorithms. A multiobjective evolutionary
algorithm considers at least two objective functions—that are partially conflicting—
and searches for a Pareto front of these objectives. The Pareto front contains solu-
tions that cannot be improved in one objective without worsening in another. Further
details about multiobjective optimization by means of evolutionary algorithms can
be found in [126]. The approach is applicable in game AI on instances where more
than one objective is relevant for the problem we attempt to solve: for instance, we
might wish to optimize both the balance and the asymmetry of a strategy game map
[712, 713], or design non-player characters that are interestingly diverse in their
behavioral space [5].

2.4.2.1 Evolutionary Algorithms for Ms Pac-Man

A simple way to employ evolutionary algorithms (EAs) in Ms Pac-Man is as fol-
lows. You could design a utility function based on a number of important parame-
ters Ms Pac-Man must consider for taking the right decision on where to move next.
These parameters, for instance, could be the current placement of ghosts, the pres-
ence of power pills, the number of pellets available on the level and so on. The next
step would be to design a utility function as the weighted sum of these parameters.
At each junction, Ms Pac-Man would need to consult its utility function for all its
possible moves and pick the move with the highest utility. The weights of the utility
function are unknown of course and this is where an EA can be of help by evolving
the weights of the utility so that they optimize the score for Ms Pac-Man. In other
words, the fitness of each chromosome (weight vector of utility) is determined by
the score obtained from Ms Pac-Man within a number of simulation steps, or game
levels played.
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2.4.3 Further Reading

We recommend three books for further reading on evolutionary computation: Eiben
and Smith’s Introduction to Evolutionary Computing [184], Ashlock’s Evolutionary
Computation for Modeling and Optimization [21] and finally, the genetic program-
ming field guide by Poli et al. [536].

2.5 Supervised Learning

Supervised learning is the algorithmic process of approximating the underlying
function between labeled data and their corresponding attributes or features [49].
A popular example of supervised learning is that of a machine that is asked to dis-
tinguish between apples and pears (labeled data) given a set of features or data
attributes such as the fruits’ color and size. Initially, the machine learns to classify
between apples and pears by seeing a number of available fruit examples—which
contain the color and size of each fruit, on one hand, and their corresponding label
(apple or pear) on the other. After learning is complete, the machine should ideally
be able to tell whether a new and unseen fruit is a pear or an apple based solely on its
color and size. Beyond distinguishing between apples and pears supervised learning
nowadays is used in a plethora of applications including financial services, medical
diagnosis, fraud detection, web page categorization, image and speech recognition,
and user modeling (among many).

Evidently, supervised learning requires a set of labeled training examples; hence
supervised. More specifically, the training signal comes as a set of supervised labels
on the data (e.g., this is an apple whereas that one is a pear) which acts upon a set
of characterizations of these labels (e.g., this apple has red color and medium size).
Consequently, each data example comes as a pair of a set of labels (or outputs) and
features that correspond to these labels (or inputs). The ultimate goal of supervised
learning is not to merely learn from the input-output pairs but to derive a function
that approximates (better, imitates) their relationship. The derived function should
be able to map well to new and unseen instances of input and output pairs (e.g., un-
seen apples and pears in our example), a property that is called generalization. Here
are some examples of input-output pairs one can meet in games and make supervised
learning relevant: {player health, own health, distance to player}! {action (shoot,
flee, idle)}; {player’s previous position, player’s current position}! {player’s next
position}; {number of kills and headshots, ammo spent}! {skill rating}; {score,
map explored, average heart rate}! {level of player frustration}; {Ms Pac-Man
and ghosts position, pellets available}! {Ms Pac-Man direction}.

Formally, supervised learning attempts to derive a function f : X ! Y , given a
set of N training examples {(x1,y1), . . . ,(xN ,yN)}; where X and Y is the input and
output space, respectively; xi is the feature (input) vector of the i-th example and yi
is its corresponding set of labels. A supervised learning task has two core steps. In
the first training step, the training samples—attributes and corresponding labels—
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are presented and the function f between attributes and labels is derived. As we will
see in the list of algorithms below f can be represented as a number of classification
rules, decision trees, or mathematical formulae. In the second testing step f can
be used to predict the labels of unknown data given their attributes. To validate the
generalizability of f and to avoid overfitting to the data [49], it is common practice
that f is evaluated on a new independent (test) dataset using a performance measure
such as accuracy, which is the percentage of test samples that are correctly predicted
by our trained function. If the accuracy is acceptable, we can use f to predict new
data samples.

But how do we derive this f function? In general, an algorithmic process modifies
the parameters of this function so that we achieve a good match between the given
labels of our training samples and the function we attempt to approximate. There
are numerous ways to find and represent that function, each one corresponding to
a different supervised learning algorithm. These include artificial neural networks,
case-based reasoning, decision tree learning, random forests, Gaussian regression,
naive Bayes classifiers, k-nearest neighbors, and support vector machines [49]. The
variety of supervised learning algorithms available is, in part, explained by the fact
that there is no single learning algorithm that works best on all supervised learning
problems out there. This is widely known as the no free lunch theorem [756].

Before covering the details of particular algorithms we should stress that the data
type of the label determines the output type and, in turn, the type of the super-
vised learning approach that can be applied. We can identify three main types of
supervised learning algorithms depending on the data type of the labels (outputs).
First, we meet classification [49] algorithms which attempt to predict categorical
class labels (discrete or nominal) such as the apples and pears of the previous ex-
ample or the level in which a player will achieve her maximum score. Second, if
the output data comes as an interval—such as the completion time of a game level
or retention time—the supervised learning task is metric regression [49]. Finally,
preference learning [215] predicts ordinal outputs such as ranks and preferences
and attempts to derive the underlying global order that characterizes those ordinal
labels. Examples of ordinal outputs include the ranked preferences of variant cam-
era viewpoints, or a preference of a particular sound effect over others. The training
signal in the preference learning paradigm provides information about the relative
relation between instances of the phenomenon we attempt to approximate, whereas
regression and classification provide information, respectively, about the intensity
and the classes of the phenomenon.

In this book, we focus on a subset of the most promising and popular super-
vised learning algorithms for game AI tasks such as game playing (see Chapter 3),
player behavior imitation or player preference prediction (see Chapter 5). The three
algorithms outlined in the remainder of this section are artificial neural networks,
support vector machines and decision tree learning. All three supervised learning
algorithms covered can be used for either classification, prediction or preference
learning tasks.
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Fig. 2.12 An illustration of an artificial neuron. The neuron is fed with the input vector x through
n connections with corresponding weight values w. The neuron processes the input by calculating
the weighted sum of inputs and corresponding connection weights and adding a bias weight (b):
x ·w+ b. The resulting formula feeds an activation function (g), the value of which defines the
output of the neuron.

2.5.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a bio-inspired approach for computational
intelligence and machine learning. An ANN is a set of interconnected processing
units (named neurons) which was originally designed to model the way a biolog-
ical brain—containing over 1011 neurons—processes information, operates, learns
and performs in several tasks. Biological neurons have a cell body, a number of den-
drites which bring information into the neuron and an axon which transmits elec-
trochemical information outside the neuron. The artificial neuron (see Fig. 2.12)
resembles the biological neuron as it has a number of inputs x (corresponding to
the neuron dendrites) each with an associated weight parameter w (corresponding
to the synaptic strength). It also has a processing unit that combines inputs with
their corresponding weights via an inner product (weighted sum) and adds a bias
(or threshold) weight b to the weighted sum as follows: x ·w+b. This value is then
fed to an activation function g (cell body) that yields the output of the neuron (cor-
responding to an axon terminal). ANNs are essentially simple mathematical models
defining a function f : x! y.

Various forms of ANNs are applicable for regression analysis, classification,
and preference learning, and even unsupervised learning (via e.g., Hebbian learning
[256] and self-organizing maps [347]). Core application areas include pattern recog-
nition, robot and agent control, game-playing, decision making, gesture, speech and
text recognition, medical and financial applications, affective modeling, and im-
age recognition. The benefits of ANNs compared to other supervised learning ap-
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proaches is their capacity to approximate any continuous real-valued function given
sufficiently large ANN architectures and computational resources [348, 152]. This
capacity characterizes ANNs as universal approximators [279].

2.5.1.1 Activation Functions

Which activation function should one use in an ANN? The original model of a
neuron by McCulloch and Pitts [450] in 1943 featured a Heaviside step activation
function which either allows the neuron to fire or not. When such neurons are em-
ployed and connected to a multi-layered ANN the resulting network can merely
solve linearly separable problems. The algorithm that trains such ANNs was in-
vented in 1958 [576] and is known as the Rosenblatt’s perceptron algorithm. Non-
linearly separable problems such as the exclusive-or gate could only be solved after
the invention of the backpropagation algorithm in 1975 [752]. Nowadays, there
are several activation functions used in conjunction with ANNs and their train-
ing. The use of the activation function, in turn, yields different types of ANNs.
Examples include Gaussian activation function that is used in radial basis function
(RBF) networks [71] and the numerous types of activation functions that can be
used in the compositional pattern producing networks (CPPNs) [653]. The most
common function used for ANN training is the sigmoid-shaped logistic function
(g(x) = 1/(1+ e�x)) for the following properties: 1) it is bounded, monotonic and
non-linear; 2) it is continuous and smooth and 3) its derivative is calculated trivially
as g0(x) = g(x)(1� g(x)). Given the properties above the logistic function can be
used in conjunction with gradient-based optimization algorithms such as backprop-
agation which is described below. Other popular activation functions for training
deep architectures of neural networks include the rectifier—named rectified lin-
ear unit (ReLU) when employed to a neuron—and its smooth approximation, the
softplus function [231]. Compared to sigmoid-shaped activation functions, ReLUs
allow for faster and (empirically) more effective training of deep ANNs, which are
generally trained on large datasets (see more in Section 2.5.1.6).

2.5.1.2 From a Neuron to a Network

To form an ANN a number of neurons need to be structured and connected. While
numerous ways have been proposed in the literature the most common of them all
is to structure neurons in layers. In its simplest form, known as the multi-layer
perceptron (MLP), neurons in an ANN are layered across one or more layers but
not connected to other neurons in the same layer (see Fig. 2.13 for a typical MLP
structure). The output of each neuron in each layer is connected to all the neurons
in the next layer. Note that a neuron’s output value feeds merely the neurons of
the next layer and, thereby, becomes their input. Consequently, the outputs of the
neurons in the last layer are the outputs of the ANN. The last layer of the ANN is
also known as the output layer whereas all intermediate layers between the output



2.5. Supervised Learning 61

Fig. 2.13 An MLP example with three inputs, one hidden layer containing four hidden neurons
and two outputs. The ANN has labeled and ordered neurons and example connection weight labels.
Bias weights b j are not illustrated in this example but are connected to each neuron j of the ANN.

and the input are the hidden layers. It is important to note that the inputs of the
ANN, x, are connected to all the neurons of the first hidden layer. We illustrate this
with an additional layer we call the input layer. The input layer does not contain
neurons as it only distributes the inputs to the first layer of neurons. In summary,
MLPs are 1) layered because they are grouped in layers; 2) feed-forward because
their connections are unidirectional and always forward (from a previous layer to
the next); and 3) fully connected because every neuron is connected to all neurons
of the next layer.

2.5.1.3 Forward Operation

In the previous section we defined the core components of an ANN whereas in this
section we will see how we compute the output of the ANN when an input pattern
is presented. The process is called forward operation and propagates the inputs of
the ANN throughout its consecutive layers to yield the outputs. The basic steps of
the forward operation are as follows:

1. Label and order neurons. We typically start numbering at the input layer and
increment the numbers towards the output layer (see Fig. 2.13). Note that
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the input layer does not contain neurons, nevertheless is treated as such for
numbering purposes only.

2. Label connection weights assuming that wi j is the connection weight from
neuron i (pre-synaptic neuron) to neuron j (post-synaptic neuron). Label
bias weights that connect to neuron j as b j.

3. Present an input pattern x.
4. For each neuron j compute its output as follows: a j = g(Âi{wi jai}+ b j),

where a j and ai are, respectively, the output of and the inputs to neuron
j (n.b. ai = xi in the input layer); g is the activation function (usually the
logistic sigmoid function).

5. The outputs of the neurons of the output layer are the outputs of the ANN.

2.5.1.4 How Does an ANN Learn?

How do we approximate f (x;w,b) so that the outputs of the ANN match the desired
outputs (labels) of our dataset, y? We will need a training algorithm that adjusts the
weights (w and b) so that f : x! y. A training algorithm as such requires two
components. First, it requires a cost function to evaluate the quality of any set of
weights. Second, it requires a search strategy within the space of possible solutions
(i.e., the weight space). We outline these aspects in the following two subsections.

Cost (Error) Function

Before we attempt to adjust the weights to approximate f , we need some measure of
MLP performance. The most common performance measure for training ANNs in
a supervised manner is the squared Euclidean distance (error) between the vectors
of the actual output of the ANN (a) and the desired labeled output y (see equation
2.2).

E =
1
2 Â

j
(y j�a j)

2 (2.2)

where the sum is taken over all the output neurons (the neurons in the final layer).
Note that the y j labels are constant values and more importantly, also note that E is
a function of all the weights of the ANN since the actual outputs depend on them.
As we will see below, ANN training algorithms build strongly upon this relationship
between error and weights.
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Backpropagation

The backpropagation (or backprop) [579] algorithm is based on gradient descent
optimization and is arguably the most common algorithm for training ANNs. Back-
propagation stands for backward propagation of errors as it calculates weight up-
dates that minimize the error function—that we defined earlier (2.2)—from the out-
put to the input layer. In a nutshell, backpropagation computes the partial derivative
(gradient) of the error function E with respect to each weight of the ANN and ad-
justs the weights of the ANN following the (opposite direction of the) gradient that
minimizes E.

As mentioned earlier, the squared Euclidean error of (2.2) depends on the weights
as the ANN output which is essentially the f (x;w,b) function. As such we can cal-
culate the gradient of E with respect to any weight ( qE

qwi j
) and any bias weight ( qE

qb j
)

in the ANN, which in turn will determine the degree to which the error will change if
we change the weight values. We can then determine how much of such change we
desire through a parameter h 2 [0,1] called learning rate. In the absence of any in-
formation about the general shape of the function between the error and the weights
but the existence of information about its gradient it appears that a gradient descent
approach would seem to be a good fit for attempting to find the global minimum of
the E function. Given the lack of information about the E function, the search can
start from some random point in the weight space (i.e., random initial weight values)
and follow the gradient towards lower E values. This process is repeated iteratively
until we reach E values we are happy with or we run out of computational resources.

More formally, the basic steps of the backpropagation algorithm are as follows:

1. Initialize w and b to random (commonly small) values.
2. For each training pattern (input-output pair):

(a) Present input pattern x, ideally normalized to a range (e.g., [0,1]).
(b) Compute ANN actual outputs a j using the forward operation.
(c) Compute E according to (2.2).
(d) Compute error derivatives with respect to each weight qE

qwi j
and bias

weight qE
qb j

of the ANN from the output all the way to the input layer.

(e) Update weights and bias weights as Dwi j =�h qE
qwi j

and Db j�h qE
qb j

,
respectively.

3. If E is small or you are out of computational budget, stop! Otherwise go to
step 2.

Note that we do not wish to detail the derivate calculations of step 2(d) as doing
so would be out of scope for this book. We instead refer the interested reader to the
original backpropagation paper [579] for the exact formulas and to the reading list
at the end of this section.
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Limitations and Solutions

It is worth noting that backpropagation is not guaranteed to find the global minimum
of E given its local search (hill-climbing) property. Further, given its gradient-based
(local) search nature, the algorithm fails to overcome potential plateaux areas in
the error function landscape. As these are areas with near-zero gradient, crossing
them results in near-zero weight updates and further in premature convergence of
the algorithm. Typical solutions and enhancements of the algorithm to overcome
convergence to local minima include:

• Random restarts: One can rerun the algorithm with new random connection
weight values in the hope that the ANN is not too dependent on luck. No ANN
model is good if it depends too much on luck—for instance, if it performs well
only in one or two out of ten runs.

• Dynamic learning rate: One can either modify the learning rate parameter and
observe changes in the performance of the ANN or introduce a dynamic learn-
ing rate parameter that increases when convergence is slow whereas it decreases
when convergence to lower E values is fast.

• Momentum: Alternatively, one may add a momentum amount to the weight up-
date rule as follows:

Dw(t)
i j = mDw(t�1)

i j �h qE
qwi j

(2.3)

where m 2 [0,1] is the momentum parameter and t is the iteration step of the
weight update. The addition of a momentum value of the previous weight up-
date (aDw(t�1)

i j ) attempts to help backpropagation to overcome a potential local
minimum.

While the above solutions are directly applicable to ANNs of small size, practical
wisdom and empirical evidence with modern (deep) ANN architectures, however,
suggests that the above drawbacks are largely eliminated [366].

Batch vs. Non-batch Training

Backpropagation can be employed following a batch or a non-batch learning mode.
In non-batch mode, weights are updated every time a training sample is presented
to the ANN. In batch mode, weights are updated after all training samples are pre-
sented to the ANN. In that case, errors are accumulated over the samples of the
batch prior to the weight update. The non-batch mode is more unstable as it itera-
tively relies on a single data point; however, this might be beneficial for avoiding a
convergence to a local minimum. The batch mode, on the other hand, is naturally
a more stable gradient descent approach as weight updates are driven by the aver-
age error of all training samples in the batch. To best utilize the advantages of both
approaches it is common to apply batch learning of randomly selected samples in
small batch sizes.
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2.5.1.5 Types of ANNs

Beyond the standard feedforward MLP there are numerous other types of ANN used
for classification, regression, preference learning, data processing and filtering, and
clustering tasks. Notably, recurrent neural networks (such as Hopfield networks
[278], Boltzmann machines [4] and Long Short-Term Memory [266]) allow con-
nections between neurons to form directed cycles, thus enabling an ANN to capture
dynamic and temporal phenomena (e.g., time-series processing and prediction). Fur-
ther, there are ANN types mostly used for clustering and data dimensionality reduc-
tion such as Kohonen self-organizing maps [347] and Autoencoders [41].

2.5.1.6 From Shallow to Deep

A critical parameter for ANN training is the size of the ANN. So, how wide and
deep should my ANN architecture be to perform well on this particular task? While
there is no formal and definite answer to this question, there is a generally accepted
rule-of-thumb suggesting that the size of the network should match the complexity
of the problem. According to Goodfellow et al. in their deep learning book [231]
an MLP is essentially a deep (feedforward) neural network. Its depth is determined
by the number of hidden layers it contains. Goodfellow et al. state that “It is from
this terminology that the name deep learning arises”. On that basis, training of
ANN architectures containing (at least) a hidden layer can be viewed as a deep
learning task whereas single output-layered architectures can be viewed as shallow.
Various methods have been introduced in recent years to enable training of deep
architectures containing several layers. The methods largely rely on gradient search
and are covered in detail in [231] for the interested reader.

2.5.1.7 ANNs for Ms Pac-Man

As with every other method in this chapter we will attempt to employ ANNs in
the Ms Pac-Man game. One straightforward way to use ANNs in Ms Pac-Man is
to attempt to imitate expert players of the game. Thus, one can ask experts to play
the game and record their playthroughs, through which a number of features can
be extracted and used as the input of the ANN. The resolution of the ANN input
may vary from simple statistics of the game—such as the average distance between
ghosts and Ms Pac-Man—to detailed pixel-to-pixel RGB values of the game level
image. The output data, on the other hand, may contain the actions selected by
Ms Pac-Man in each frame of the game. Given the input and desired output pairs,
the ANN is trained via backpropagation to predict the action performed by expert
players (ANN output) given the current game state (ANN input). The size (width
and depth) of the ANN depends on both the amount of data available from the
expert Ms Pac-Man players and the size of the input vector considered.



66 Chapter 2. AI Methods

2.5.2 Support Vector Machines

Support vector machines (SVMs) [139] are an alternative and very popular set of
supervised learning algorithms that can be used for classification, regression [179]
and preference learning [302] tasks. A support vector machine is a binary linear
classifier that is trained so as to maximize the margin between the training examples
of the separate classes in the data (e.g., apples and pears). As with every other super-
vised learning algorithm, the attributes of new and unseen examples are seeding the
SVM which predicts the class they belong to. SVMs have been used widely for text
categorization, speech recognition, image classification, and hand-written character
recognition among many other areas.

Similarly to ANNs, SVMs construct a hyperplane that divides the input space
and represents the function f that maps between the input and the target outputs. In-
stead of implicitly attempting to minimize the difference between the model’s actual
output and the target output following the gradient of the error (as backpropagation
does), SVMs construct a hyperplane that maintains the largest distance to the nearest
training-data point of any other class. That distance is called a maximum-margin
and its corresponding hyperplane divides the points (xi) of class with label (yi) 1
from those with label �1 in a dataset of n samples in total. In other words, the dis-
tance between the derived hyperplane and the nearest point xi from either class is
maximized. Given the input attributes of a training dataset, x, the general form of a
hyperplane can be defined as: w · x� b = 0 where, as in backpropagation training,
w is the weight (normal) vector of the hyperplane and b

kwk determines the offset
(or weight threshold/bias) of the hyperplane from the origin (see Fig. 2.14). Thus,
formally put, an SVM is a function f (x;w,b) that predicts target outputs (y) and
attempts to

minimize kwk, (2.4)
subject to yi(w ·xi�b)� 1, for i = 1, . . . , n (2.5)

The weights w and b determine the SVM classifier. The xi vectors that lie nearest
to the derived hyperplane are called support vectors. The above problem is solvable
if the training data is linearly separable (also known as a hard-margin classification
task; see Fig. 2.14). If the data is not linearly separable (soft-margin) the SVM
instead attempts to

minimize

"
1
n

n

Â
i=1

max(0,1� yi(w ·xi�b))

#
+l ||w||2 (2.6)

which equals l ||w||2 if the hard constraints of equation 2.5 are satisfied—i.e., if
all data points are correctly classified on the right side of the margin. The value of
equation (2.6) is proportional to the distance from the margin for misclassified data
and l is designed so as to qualitatively determine the degree to which the margin-
size should be increased versus ensuring that the xi will lie on the correct side of the
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Fig. 2.14 An example of a maximum-margin hyperplane (red thick line) and margins (black lines)
for an SVM which is trained on data samples from two classes. Solid and empty circles correspond
to data with labels 1 and �1, respectively. The classification is mapped onto a two-dimensional
input vector (x1,x2) in this example. The two data samples on the margin—the circles depicted
with red outline—are the support vectors.

margin. Evidently, if we choose a small value for l we approximate the hard-margin
classifier for linearly separable data.

The standard approach for training soft-margin classifiers is to treat the learning
task as a quadratic programming problem and search the space of w and b to find
the widest possible margin that matches all data points. Other approaches include
sub-gradient descent and coordinate descent.

In addition to linear classification tasks, SVMs can support non-linear classifi-
cation by employing a number of different non-linear kernels which map the in-
put space onto higher-dimensional feature spaces. The SVM task remains similar,
except that every dot product is replaced by a nonlinear kernel function. This al-
lows the algorithm to fit the maximum-margin hyperplane in a transformed feature
space. Popular kernels used in conjunction with SVMs include polynomial func-
tions, Gaussian radial basis functions or hyperbolic tangent functions.
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While SVMs were originally designed to tackle binary classification problems
there exist several SVM variants that can tackle multi-class classification [284], re-
gression [179] and preference learning [302] that the interested reader can refer to.

SVMs have a number of advantages compared to other supervised learning ap-
proaches. They are efficient in finding solutions when dealing with large, yet sparse,
datasets as they only depend on support vectors to construct hyperplanes. They also
handle well large feature spaces as the learning task complexity does not depend on
the dimensionality of the feature space. SVMs feature a simple convex optimization
problem which can be guaranteed to converge to a single global solution. Finally,
overfitting can be controlled easily through the soft margin classification approach.

2.5.2.1 SVMs for Ms Pac-Man

Similarly to ANNs, SVMs can be used for imitating the behavior of Ms Pac-Man
expert players. The considerations about the feature (input) space and the action
(output) space remain the same. In addition to the design of the input and output
vectors, the size and quality of the data obtained from expert players will determine
the performance of the SVM controlling Ms Pac-Man towards maximizing its score.

2.5.3 Decision Tree Learning

In decision tree learning [67], the function f we attempt to derive uses a decision
tree representation which maps attributes of data observations to their target values.
The former (inputs) are represented as the nodes and the latter (outputs) are repre-
sented as the leaves of the tree. The possible values of each node (input) are repre-
sented by the various branches of that node. As with the other supervised learning
algorithms, decision trees can be classified depending on the output data type they
attempt to learn. In particular, decision trees can be distinguished into classification,
regression and rank trees if, respectively, the target output is a finite set of values, a
set of continuous (interval) values, or a set of ordinal relations among observations.

An example of a decision tree is illustrated in Fig. 2.15. Tree nodes correspond
to input attributes; there are branches to children for each of the possible values of
each input attribute. Further leaves represent values of the output—car type in this
example—given the values of the input attributes as determined by the path from
the root to the leaf.

The goal of decision tree learning is to construct a mapping (a tree model) that
predicts the value of target outputs based on a number of input attributes. The basic
and most common approach for learning decision trees from data follows a top-
down recursive tree induction strategy which has the characteristics of a greedy
process. The algorithm assumes that both the input attributes and the target outputs
have finite discrete domains and are of categorical nature. If inputs or outputs are
continuous values, they can be discretized prior to constructing the tree. A tree is



2.5. Supervised Learning 69

Fig. 2.15 A decision tree example: Given age, employment status and salary (data attributes) the
tree predicts the type of car (target value) a person owns. Tree nodes (blue rounded rectangles)
represent data attributes, or inputs, whereas leaves (gray ovals) represent target values, or outputs.
Tree branches represent possible values of the corresponding parent node of the tree.

.

gradually constructed by splitting the available training dataset into subsets based
on selections made for the attributes of the dataset. This process is repeated on a
attribute-per-attribute basis in a recursive manner.

There are several variants of the above process that lead to dissimilar decision-
tree algorithms. The two most notable variants of decision tree learning, however,
are the Iterative Dichotomiser 3 (ID3) [544] and its successor C4.5 [545]. The
basic tree learning algorithm has the following general steps:

1. At start, all the training examples are at the root of the tree.
2. Select an attribute on the basis of a heuristic and pick the attribute with the

maximum heuristic value. The two most popular heuristics are as follows:

• Information gain: This heuristic is used by both the ID3 and the C4.5
tree-generation algorithms. Information gain G(A) is based on the con-
cept of entropy from information theory and measures the difference in
entropy H from before to after the dataset D is split on an attribute A.

G(A) = H(D)�HA(D) (2.7)

where H(D) is the entropy of D (H(D) = �Âm
i pi log2(pi)); pi is the

probability that an arbitrary sample in D belongs to class i; m is the total
number of classes; HA(D) is the information needed (after using attribute
A to split D into v partitions) to classify D and is calculated as HA(D) =
�Âv

j(|D j|/|D|)H(D j) with |x| being the size of x.
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• Gain ratio: The C4.5 algorithm uses the gain ratio heuristic to reduce the
bias of information gain towards attributes with a large number of values.
The gain ratio normalizes information gain by taking into account the
number and size of branches when choosing an attribute. The information
gain ratio is the ratio between the information gain and the intrinsic value
IVA of attribute A:

GR(A) = G(A)/IVA(D) (2.8)

where

IVA(D) =�
v

Â
j

|D j|
|D| log2(

|D j|
|D| ) (2.9)

3. Based on the selected attribute from step 2, construct a new node of the
tree and split the dataset into subsets according to the possible values of the
selected attribute. The possible values of the attribute become the branches
of the node.

4. Repeat steps 2 and 3 until one of the following occurs:

• All samples for a given node belong to the same class.
• There are no remaining attributes for further partitioning.
• There are no data samples left.

2.5.3.1 Decision Trees for Ms Pac-Man

As with ANNs and SVMs, decision tree learning requires data to be trained on.
Presuming that data from expert Ms Pac-Man players would be of good quality
and quantity, decision trees can be constructed to predict the strategy of Ms Pac-
Man based on a number of ad-hoc designed attributes of the game state. Figure
2.16 illustrates a simplified hypothetical decision tree for controlling Ms Pac-Man.
According to that example if a ghost is nearby then Ms Pac-Man checks if power
pills are available in a close distance and aims for those; otherwise it takes actions so
that it evades the ghost. If alternatively, ghosts are not visible Ms Pac-Man checks
for pellets. If those are nearby or in a fair distance then it aims for them; otherwise
it aims for the fruit, if that is available on the level. It is important to note that the
leaves of the tree in our example represent control strategies (macro-actions) rather
than actual actions (up, down, left, right) for Ms Pac-Man.
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Fig. 2.16 A decision tree example for controlling Ms Pac-Man. The tree is trained on data from
expert Ms Pac-Man players. Given the distance from the nearest ghost, power pill and pellet (data
attributes) the tree predicts the strategy Ms Pac-Man needs to follow.

2.5.4 Further Reading

The core supervised learning algorithms are covered in detail in the Russell and
Norvig classic AI textbook [582] including decision tree learning (Chapter 18) and
artificial neural networks (Chapter 19). Detailed descriptions of artificial neural net-
works and backpropagation can also be found in the book of Haykin [253]. Deep
architectures of ANNs are covered in great detail in the deep learning book by Good-
fellow et al. [231]. Finally, support vector machines are covered in the tutorial paper
of Burges [86].

The preference learning version of backpropagation in shallow and deep archi-
tectures can be found in [430, 436] whereas RankSVM is covered in the original
paper of Joachims [303].

2.6 Reinforcement Learning

Reinforcement Learning (RL) [672] is a machine learning approach inspired by
behaviorist psychology and, in particular, the way humans and animals learn to take
decisions via (positive or negative) rewards received by their environment. In rein-
forcement learning, samples of good behavior are usually not available (as in su-
pervised learning); instead, similarly to evolutionary (reinforcement) learning, the
training signal of the algorithm is provided by the environment based on how an
agent is interacting with it. At a particular point in time t, the agent is on a particular
state s and decides to take an action a from all the available actions in its current
state. As a response the environment delivers an immediate reward, r. Through
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Fig. 2.17 A reinforcement learning example. The agent (triangle) attempts to reach the goal (G)
by taking an action (a) among all available actions in its current state (s). The agent receives an
immediate reward (r) and the environment notifies the agent about its new state after taking the
action.

.

the continuous interaction between the agent and its environment, the agent gradu-
ally learns to select actions that maximize its sum of rewards. RL has been studied
from a variety of disciplinary perspectives including operations research, game the-
ory, information theory, and genetic algorithms and has been successfully applied in
problems which involve a balance between long-term and short-term rewards such
as robot control and games [464, 629]. An example of the reinforcement problem is
illustrated through a maze navigation task in Fig. 2.17.

More formally, the aim of the agent is to discover a policy (p) for selecting
actions that maximize a measure of a long-term reward such as the expected cumu-
lative reward. A policy is a strategy that the agent follows in selecting actions, given
the state it is in. If the function that characterizes the value of each action either
exists or is learned, the optimal policy (p⇤) can be derived by selecting the action
with the highest value. The interactions with the environment occur in discrete time
steps (t = {0,1,2, . . .}) and are modeled as a Markov decision process (MDP). The
MDP is defined by

• S: A set of states {s1, ...,sn} 2 S. The environment states are a function of the
agent’s information about the environment (i.e., the agent’s inputs).

• A: A set of actions {a1, ...,am} 2 A possible in each state s. The actions represent
the different ways the agent can act in the environment.

• P(s,s0,a): The probability of transition from s to s0 given a. P gives the prob-
ability of ending in state s0 after picking action a in state s and it follows the
Markov property implying that future states of the process depend only upon
the present state, not on the sequence of events that preceded it. As a result, the
Markov property of P makes predictions of 1-step dynamics possible.

• R(s,s0,a): The reward function on transition from s to s0 given a. When the agent
in state s picks an action a and moves to state s0, it receives an immediate reward
r from the environment.



2.6. Reinforcement Learning 73

P and R define the world model and represent, respectively, the environment’s
dynamics (P) and the long-term reward (R) for each policy. If the world model is
known there is no need to learn to estimate the transition probability and reward
function and we thus directly calculate the optimal strategy (policy) using model-
based approaches such as dynamic programming [44]. If, instead, the world model
is unknown we approximate the transition and the reward functions by learning es-
timates of future rewards given by picking action a in state s. We then calculate
our policy based on these estimates. Learning occurs via model-free methods such
as Monte Carlo search and temporal difference learning [672]. In this section we
put an emphasis on the latter set of algorithms and in particular, we focus on the
most popular algorithm of TD learning: Q-learning. Before delving into the details
of the Q-learning algorithm, we first discuss a few core RL concepts and provide a
high-level taxonomy of RL algorithms according to RL problems and tools used for
tackling them. We will use this taxonomy to place Q-learning with respect to RL as
a whole.

2.6.1 Core Concepts and a High-Level Taxonomy

A central question in RL problems is the right balance between the exploitation of
current learned knowledge versus the exploration of new unseen territories in the
search space. Both randomly selecting actions (no exploitation) and always greed-
ily selecting the best action according to a measure of performance or reward (no
exploration) are strategies that generally yield poor results in stochastic environ-
ments. While several approaches have been proposed in the literature to address
the exploration-exploitation balance issue, a popular and rather efficient mechanism
for RL action selection is called e-greedy, determined by the e 2 [0,1] parameter.
According to e-greedy the RL agent chooses the action it believes will return the
highest future reward with probability 1� e; otherwise, it chooses an action uni-
formly at random.

RL problems can be classified into episodic versus incremental. In the former
class, algorithm training occurs offline and within a finite horizon of multiple train-
ing instances. The finite sequence of states, actions and reward signals received
within that horizon is called an episode. Monte Carlo methods that rely on repeated
random sampling, for instance, are a typical example of episodic RL. In the lat-
ter class of algorithms, instead, learning occurs online and it is not bounded by an
horizon. We meet TD learning under incremental RL algorithms.

Another distinction is between off-policy and on-policy RL algorithms. An off-
policy learner approximates the optimal policy independently of the agent’s actions.
As we will see below, Q-learning is an off-policy learner since it estimates the return
for state-action pairs assuming that a greedy policy is followed. An on-policy RL
algorithm instead approximates the policy as a process being tied to the agent’s
actions including the exploration steps.
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Bootstrapping is a central notion within RL that classifies algorithms based on
the way they optimize state values. Bootstrapping estimates how good a state is
based on how good we think the next state is. In other words, with bootstrapping
we update an estimate based on another estimate. Both TD learning and dynamic
programming use bootstrapping to learn from the experience of visiting states and
updating their values. Monte Carlo search methods instead do not use bootstrapping
and thus learn each state value separately.

Finally, the notion of backup is central in RL and acts as a distinctive feature
among RL algorithms. With backup we go backwards from a state in the future,
st+h, to the (current) state we want to evaluate, st , and consider the in-between state
values in our estimates. The backup operation has two main properties: its depth—
which varies from one step backwards to a full backup—and its breadth—which
varies from a (randomly) selected number of sample states within each time step to
a full-breadth backup.

Based on the above criteria we can identify three major RL algorithm types:

1. Dynamic programming. In dynamic programming knowledge of the world
model (P and R) is required and the optimal policy is calculated via bootstrap-
ping.

2. Monte Carlo methods. Knowledge of the world model is not required for
Monte Carlo methods. Algorithms of this class (e.g., MCTS) are ideal for off-
line (episodic) training and they learn via sample-breadth and full-depth backup.
Monte Carlo methods do not use bootstrapping, however.

3. TD learning. As with Monte Carlo methods knowledge of the world model is
not required and it is thus estimated. Algorithms of this type (e.g., Q-learning)
learn from experience via bootstrapping and variants of backup.

In the following section we cover the most popular TD learning algorithm in the
RL literature with the widest use in game AI research.

2.6.2 Q-Learning

Q-learning [748] is a model-free, off-policy, TD learning algorithm that relies on
a tabular representation of Q(s,a) values (hence its name). Informally, Q(s,a) rep-
resents how good it is to pick action a in state s. Formally, Q(s,a) is the expected
discounted reinforcement of taking action a in state s. The Q-learning agent learns
from experience by picking actions and receiving rewards via bootstrapping.

The goal of the Q-learning agent is to maximize its expected reward by pick-
ing the right action at each state. The reward, in particular, is a weighted sum of
the expected values of the discounted future rewards. The Q-learning algorithm is
a simple update on the Q values in an iterative fashion. Initially, the Q table has
arbitrary values as set by the designer. Then each time the agent selects an action
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a from state s, it visits state s0, it receives an immediate reward r, and updates its
Q(s,a) value as follows:

Q(s,a) Q(s,a)+a{r+ g max
a0

Q(s0,a0)�Q(s,a)} (2.10)

where a 2 [0,1] is the learning rate and g 2 [0,1] is the discount factor. The
learning rate determines the extent to which the new estimate for Q will override
the old estimate. The discount factor weights the importance of earlier versus later
rewards; the closer g is to 1, the greater the weight is given to future reinforcements.
As seen from equation (2.10), the algorithm uses bootstrapping since it maintains
estimates of how good a state-action pair is (i.e., Q(s,a)) based on how good it thinks
the next state is (i.e., Q(s0,a0)). It also uses a one-step-depth, full-breadth backup to
estimate Q by taking into consideration all Q values of all possible actions a0 of
the newly visited state s0. It is proven that by using the learning rule of equation
(2.10) the Q(s,a) values converge to the expected future discounted reward [748].
The optimal policy can then be calculated based on the Q-values; the agent in state
s selects the action a with the highest Q(s,a) value. In summary, the basic steps of
the algorithm are as follows:

Given an immediate reward function r and a table of Q(s,a) values for all pos-
sible actions in each state:

1. Initialize the table with arbitrary Q values; e.g., Q(s,a) = 0.
2. s Start state.
3. While not finished* do:

(a) Choose an action a based on policy derived from Q (e.g., e-greedy).
(b) Apply the action, transit to state s0, and receive an immediate reward

r.
(c) Update the value of Q(s,a) as per (2.10).
(d) s s0.

*The most commonly used termination conditions are the algorithm’s speed—
i.e., stop within a number of iterations—or the quality of convergence—i.e.,
stop if you are satisfied with the obtained policy.

2.6.2.1 Limitations of Q-Learning

Q-learning has a number of limitations associated primarily with its tabular repre-
sentation. First of all, depending on the chosen state-action representation the size
of the state-action space might be computationally very expensive to handle. As
the Q table size grows our computational needs for memory allocation and infor-
mation retrieval increase. Further, we may experience very long convergence since
learning time is exponential to the size of the state-action space. To overcome these
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obstacles and get decent performance from RL learners we need to devise a way of
reducing the state-action space. Section 2.8 outlines the approach of using artificial
neural networks as Q-value function approximators, directly bypassing the Q-table
limitation and yielding compressed representations for our RL learner.

2.6.2.2 Q-Learning for Ms Pac-Man

Q-learning is applicable for controlling Ms Pac-Man as long as we define a suitable
state-action space and we design an appropriate reward function. A state in Ms Pac-
Man could be represented directly as the current snapsnot of the game—i.e., where
Ms Pac-Man and ghosts are and which pellets and power pills are still available.
That representation, however, yields a prohibitive number of game states for a Q-
table to be constructed and processed. Instead, it might be preferred to choose a
more indirect representation such as whether ghosts and pellets are nearby or not.
Possible actions for Ms Pac-Man could be that it either keeps its current direction,
it turns backward, it turns left, or it turns right. Finally, the reward function can be
designed to reward Ms Pac-Man positively when it eats a pellet, a ghost or a power
pill, whereas it could penalize Ms Pac-Man when it dies.

It is important to note that both Pac-Man and Ms Pac-Man follow the Markov
property in the sense that any future game states may depend only upon the present
game state. There is one core difference however: while the transition probability in
Pac-Man is known given its deterministic nature, it is largely unknown in Ms Pac-
Man given the stochastic behavior of the ghosts in that game. Thereby, Pac-Man can
theoretically be solved via model-based approaches (e.g., dynamic programming)
whereas the world model of Ms Pac-Man can only be approximated via model-free
methods such as temporal difference learning.

2.6.3 Further Reading

The RL book of Sutton and Barto [672] is highly recommended for a thorough
presentation of RL including Q-learning (Chapter 6). The book is freely available
online.6 A draft version of the latest (2017) version of the book is also available.7
The survey paper of Kaelbling et al. [316] is another recommended reading of the
approaches covered. Finally, for an in-depth analysis of model-based RL approaches
you are referred to the dynamic programming book of Bertsekas [44].

6 http://incompleteideas.net/sutton/book/ebook/the-book.html
7 http://incompleteideas.net/sutton/book/the-book-2nd.html



2.7. Unsupervised Learning 77

2.7 Unsupervised Learning

As stated earlier, the utility type (or training signal) determines the class of the AI
algorithm. In supervised learning the training signal is provided as data labels (target
outputs) and in reinforcement learning it is derived as a reward from the environ-
ment. Unsupervised learning instead attempts to discover associations of the input
by searching for patterns among all input data attributes and without having access
to a target output—a machine learning process that is usually inspired by Hebbian
learning [256] and the principles of self-organization [20]. With unsupervised learn-
ing we focus on the intrinsic structure of and associations in the data instead of
attempting to imitate or predict target values. We cover two unsupervised learning
tasks with corresponding algorithms: clustering and frequent pattern mining.

2.7.1 Clustering

Clustering is the unsupervised learning task of finding unknown groups of a num-
ber of data points so that data within a group (or else, cluster) is similar to each
other and dissimilar to data from other clusters. Clustering has found applications in
detecting groups of data across multiple attributes and in data reduction tasks such
as data compression, noise smoothing, outlier detection and dataset partition. Clus-
tering is of key importance for games with applications in player modeling, game
playing and content generation.

As with classification, clustering places data into classes; the labels of the classes,
however, are unknown a priori and clustering algorithms aim to discover them by
assessing their quality iteratively. Since the correct clusters are unknown, similar-
ity (and dissimilarity) depends only on the data attributes used. Good clusters are
characterized by two core properties: 1) high intra-cluster similarity, or else, high
compactness and 2) low inter-cluster similarity, or else, good separation. A popular
measure of compactness is the average distance between every sample in the cluster
and the closest representative point—e.g., centroid—as used in the k-means algo-
rithm. Examples of separation measures include the single link and the complete
link: the former is the smallest distance between any sample in one cluster and any
sample in the other cluster; the latter is the largest distance between any sample in
one cluster and any sample in the other cluster. While compactness and separation
are objective measures of cluster validity, it is important to note that they are not
indicators of cluster meaningfulness.

Beyond the validity metrics described above, clustering algorithms are defined by
a membership function and a search procedure. The membership function defines
the structure of the clusters in relation to the data samples. The search procedure is
a strategy we follow to cluster our data given a membership function and a validity
metric. Examples of such strategies include splitting all data points into clusters at
once (as in k-means), or recursively merging (or splitting) clusters (as in hierarchical
clustering).
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Clustering can be realized via a plethora of algorithms including hierarchical
clustering, k-means [411], k-medoids [329], DBSCAN [196] and self-organizing
maps [347]. The algorithms are dissimilar in the way they define what a cluster
is and how they form it. Selecting an appropriate clustering algorithm and its cor-
responding parameters, such as which distance function to use or the number of
clusters to expect, depends on the aims of the study and the data available. In the
remainder of the section we outline the clustering algorithms we find to be the most
useful for the study of AI in games.

2.7.1.1 K-Means Clustering

K-means [411] is a vector quantization method that is considered the most popular
clustering algorithm as it offers a good balance between simplicity and effective-
ness. It follows a simple data partitioning approach according to which it partitions
a database of objects into a set of k clusters, such that the sum of squared Euclidean
distances between data points and their corresponding cluster center (centroid) is
minimized—this distance is also known as the quantization error.

In k-means each cluster is defined by one point, that is the centroid of the clus-
ter, and each data sample is assigned to the closest centroid. The centroid is the
mean of the data samples in the cluster. The intra-cluster validity metric used by
k-means is the average distance to the centroid. Initially, the data samples are ran-
domly assigned to a cluster and then the algorithm proceeds by alternating between
the re-assignment of data into clusters and the update of the resulting centroids. The
basic steps of the algorithm are as follows:

Given k

1. Randomly partition the data points into k nonempty clusters.
2. Compute the position of the centroids of the clusters of the current partition-

ing. Centroids are the centers (mean points) of the clusters.
3. Assign each data point to the cluster with the nearest centroid.
4. Stop when the assignment does not change; otherwise go to step 2.

While k-means is very popular due to its simplicity it has a number of con-
siderable weaknesses. First, it is applicable only to data objects in a continuous
space. Second, one needs to specify the number of clusters, k, in advance. Third,
it is not suitable to discover clusters with non-convex shapes as it can only find
hyper-spherical clusters. Finally, k-means is sensitive to outliers as data points with
extremely large (or small) values may substantially distort the distribution of the
data and affect the performance of the algorithm. As we will see below, hierarchical
clustering manages to overcome some of the above drawbacks, suggesting a useful
alternative approach to data clustering.
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2.7.1.2 Hierarchical Clustering

Clustering methods that attempt to build a hierarchy of clusters fall under the hi-
erarchical clustering approach. Generally speaking there are two main strategies
available: the agglomerative and the divisive. The former constructs hierarchies in
a bottom-up fashion by gradually merging data points together, whereas the lat-
ter constructs hierarchies of clusters by gradually splitting the dataset in a top-down
fashion. Both clustering strategies are greedy. Hierarchical clustering uses a distance
matrix as the clustering strategy (whether agglomerative or divisive). This method
does not require the number of clusters k as an input, but needs a termination con-
dition.

Indicatively, we present the basic steps of the agglomerative clustering algorithm
which are as follows:

Given k

1. Create one cluster per data sample.
2. Find the two closest data samples—i.e., find the shortest Euclidean distance

between two points (single link)—which are not in the same cluster.
3. Merge the clusters containing these two samples.
4. Stop if there are k clusters; otherwise go to step 2.

In divisive hierarchical clustering instead, all data are initially in the same cluster
which is split until every data point is on its own cluster following a split strategy—
e.g., DIvisive ANAlysis Clustering (DIANA) [330]—or employing another cluster-
ing algorithm to split the data in two clusters—e.g., 2-means.

Once clusters of data are iteratively merged (or split), one can visualize the clus-
ters by decomposing the data into several levels of nested partitioning. In other
words, one can observe a tree representation of clusters which is also known as a
dendrogram. The clustering of data is obtained by cutting the dendrogram at the
desired level of squared Euclidean distance. For the interested reader, a dendrogram
example is illustrated in Chapter 5.

Hierarchical clustering represents clusters as the set of data samples contained in
them and, as a result, a data sample belongs to the same cluster as its closest sample.
In k-means instead, each cluster is represented by a centroid and thus a data sample
belongs to the cluster represented by the closest centroid. Further, when it comes to
cluster validity metrics, agglomerative clustering uses the shortest distance between
any sample in one cluster and a sample in another whereas k-means uses the average
distance to the centroid. Due to these different algorithmic properties hierarchical
clustering has the capacity to cluster data that come in any form of a connected
shape; k-means, on the other hand, is only limited to hyper-spherical clusters.
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2.7.1.3 Clustering for Ms Pac-Man

One potential application of clustering for controlling Ms Pac-Man would be to
model ghost behaviors and use that information as an input to the controller of
Ms Pac-Man. Whether it is k-means or hierarchical clustering, the algorithm would
consider different attributes of ghost behavior—such as level exploration, behavior
divergence, distance between ghosts, etc.—and cluster the ghosts into behavioral
patterns or profiles. The controller of Ms Pac-Man would then consider the ghost
profile met in a particular level as an additional input for guiding the agent better.

Arguably, beyond agent control, we can think of better uses of clustering for this
game such as profiling Ms Pac-Man players and generating appropriate levels or
challenges for them so that the game is balanced. As mentioned earlier, however,
the focus of the Ms Pac-Man examples is on the control of the playing agent for the
purpose of maintaining a consistent paradigm throughout this chapter.

2.7.2 Frequent Pattern Mining

Frequent pattern mining is a set of techniques that attempt to derive frequent
patterns and structures in data. Patterns include sequences and itemsets. Frequent
pattern mining was first proposed for mining association rules [6], which aims to
identify a number of data attributes that frequently associate to each other, thereby
forming conditional rules among them. There are two types of frequent pattern min-
ing that are of particular interest for game AI: frequent itemset mining and fre-
quent sequence mining. The former aims to find structure among data attributes
that have no particular internal order whereas the latter aims to find structure among
data attributes based on an inherent temporal order. While associated with the unsu-
pervised learning paradigm, frequent pattern mining is dissimilar in both the aims
and the algorithmic procedures it follows.

Popular and scalable frequent pattern mining methods include the Apriori al-
gorithm [6] for itemset mining, and SPADE [793] and GSP [652, 434, 621] for
sequence mining. In the remainder of this section we outline Apriori and GSP as
representative algorithms for frequent itemset and frequent sequence mining, re-
spectively.

2.7.2.1 Apriori

Apriori [7] is an algorithm for frequent itemset mining. The algorithm is appropriate
for mining datasets that contain sets of instances (also named transactions) that each
feature a set of items, or an itemset. Examples of transactions include books bought
by an Amazon customer or apps bought by a smartphone user. The algorithm is
very simple and can be described as follows: given a predetermined threshold named
support (T ), Apriori detects the itemsets which are subsets of at least T transactions
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in the database. In other words, Apriori will attempt to identify all itemsets that have
at least a minimum support which is the minimum number of times an itemset exists
in the dataset.

To demonstrate Apriori in a game example, below we indicatively list events
from four players of an online role playing game:

• <Completed more than 10 levels; Most achievements unlocked; Bought the
shield of the magi>

• <Completed more than 10 levels; Bought the shield of the magi>
• <Most achievements unlocked; Bought the shield of the magi; Found the Wiz-

ard’s purple hat>
• <Most achievements unlocked; Found the Wizard’s purple hat; Completed more

than 10 levels; Bought the shield of the magi>

If in the example dataset above we assume that the support is 3, the following
1-itemsets (sets of only one item) can be found: <Completed more than 10 levels>,
<Most achievements unlocked> and <Bought the shield of the magi>. If instead,
we seek 2-itemsets with a support threshold of 3 we can find <Completed more than
10 levels, Bought the shield of the magi>, as three of the transactions above contain
both of these items. Longer itemsets are not available (not frequent) for support
count 3. The process can be repeated for any support threshold we wish to detect
frequent itemsets for.

2.7.2.2 Generalized Sequential Patterns

Frequent itemset mining algorithms are not adequate if the sequence of events is
the critical information we wish to mine from a dataset. The dataset may contain
events in an ordered set of sequences such as temporal sequence data or time series.
Instead, we need to opt for a frequent sequence mining approach. The sequence min-
ing problem can be simply described as the process of finding frequently occurring
subsequences given a sequence or a set of sequences.

More formally, given a dataset in which each sample is a sequence of events,
namely a data sequence, a sequential pattern defined as a subsequence of events is
a frequent sequence if it occurs in the samples of the dataset regularly. A frequent
sequence can be defined as a sequential pattern that is supported by, at least, a min-
imum amount of data-sequences. This amount is determined by a threshold named
minimum support value. A data sequence supports a sequential pattern if and only
if it contains all the events present in the pattern in the same order. For example, the
data-sequence < x0,x1,x2,x3,x4,x5 > supports the pattern < x0,x5 >. As with fre-
quent itemset mining, the amount of data sequences that support a sequential pattern
is referred as the support count.

The Generalized Sequential Patterns (GSP) algorithm [652] is a popular method
for mining frequent sequences in data. GSP starts by extracting the frequent se-
quences with a single event, namely 1-sequences. That set of sequences is self-
joined to generate all 2-sequence candidates for which we calculate their support
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count. Those sequences that are frequent (i.e., their support count is greater than a
threshold value) are then self-joined to generate the set of 3-sequence candidates.
The algorithm is gradually increasing the length of the sequences in each algorith-
mic step until the next set of candidates is empty. The basic principle of the algo-
rithm is that if a sequential pattern is frequent, then its contiguous subsequences are
also frequent.

2.7.2.3 Frequent Pattern Mining for Ms Pac-Man

Patterns of events of sequences can be extracted to assist the control of Ms Pac-Man.
Itemsets may be identified across successful events of expert Ms Pac-Man play-
ers given a particular support count. For instance, an Apriori algorithm running on
events across several different expert players might reveal that a frequent 2-itemset
is the following: <player went for the upper left corner first, player ate the bottom
right power pill first>. Such information can be useful explicitly for designing rules
for controlling Ms Pac-Man.

Beyond itemsets, frequencies of ghost events can be considered for playing Ms
Pac-Man. For example, by running GSP on extracted attributes of ghosts it might
turn out that when Ms Pac-Man eats a power pill it is very likely that the Blinky
ghost moves left (<power pill, Blinky left>). Such frequent sequences can form
additional inputs of any Ms Pac-Man controller—e.g., an ANN. Chapter 5 details
an example on this frequent sequence mining approach in a 3D prey-predator game.

2.7.3 Further Reading

A general introduction to frequent pattern mining is offered in [6]. The Apriori
algorithm is detailed in the original article of Agrawal and Srikant [7] whereas GSP
is covered throughly in [652].

2.8 Notable Hybrid Algorithms

AI methods can be interwoven in numerous ways to yield new sophisticated algo-
rithms that aggregate the strengths of their combined parts, often with an occurring
gestalt effect. You can, for instance, let GAs evolve your behavior trees or FSMs;
you can instead empower MCTS with ANN estimators for tree pruning; or you can
add a component of local search in every search algorithm covered earlier. We name
the resulting combinations of AI methods as hybrid algorithms and in this section
we cover the two most influential, in our opinion, hybrid game AI algorithms: neu-
roevolution and temporal difference learning with ANN function approximators.
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2.8.1 Neuroevolution

The evolution of artificial neural networks, or else neuroevolution, refers to the
design of artificial neural networks—their connection weights, their topology, or
both—using evolutionary algorithms [786]. Neuroevolution has been successfully
applied in the domains of artificial life, robot control, generative systems and com-
puter games. The algorithm’s wide applicability is primarily due to two main rea-
sons. First, many AI problems can be viewed as function optimization problems
whose underlying general function can be approximated via an ANN. Second, neu-
roevolution is a method grounded in biological metaphors and evolutionary theory
and inspired by the way brains evolve [567].

This evolutionary (reinforcement) learning approach is applicable either when
the error function available is not differentiable or when target outputs are not avail-
able. The former may occur, for instance, when the activation functions employed
in the ANN are not continuous and, thus, not differentiable. (This is a prominent
phenomenon, for instance, in the compositional pattern producing networks [653].)
The latter may occur in a domain for which we have no samples of good (or bad)
behavior or it is impossible to define objectively what a good behavior might be. In-
stead of backpropagating the error and adjusting the ANN based on gradient search,
neuroevolution designs ANNs via metaheuristic (evolutionary) search. In contrast to
supervised learning, neuroevolution does not require a dataset of input-output pairs
to train ANNs. Rather, it requires only a measure of a ANN’s performance on the
problem under investigation, for instance, the score of a game playing agent that is
controlled by an ANN.

The core algorithmic steps of neuroevolution are as follows:

1. A population of chromosomes that represent ANNs is evolved to optimize
a fitness function that characterizes the utility (quality) of the ANN repre-
sentation. The population of chromosomes (ANNs) is typically initialized
randomly.

2. Each chromosome is encoded into an ANN which is, in turn, tested on the
task under optimization.

3. The testing procedure assigns a fitness value for each ANN of the popula-
tion. The fitness of an ANN defines its measure of performance on the task.

4. Once the fitness values for all genotypes in the current population are deter-
mined, a selection strategy (e.g., roulette-wheel, tournament) is applied to
pick the parents for the next generation.

5. A new population of offspring is generated by applying genetic operators
on the selected ANN-encoded chromosomes. Mutation and/or crossover are
applied on the chromosomes in the same way as in any evolutionary algo-
rithm.

6. A replacement strategy (e.g., steady-state, elitism, generational) is applied
to determine the final members of the new population.
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7. Similarly to a typical evolutionary algorithm, the generational loop (steps 2
to 6) is repeated until we exhaust our computational budget or we are happy
with the obtained fitness of the current population.

Typically there are two types of neuroevolution approaches: those that consider
the evolution of a network’s connection weights only and those that evolve both the
connection weights and the topology of the network (including connection types
and activation functions). In the former type of neuroevolution, the weight vector is
encoded and represented genetically as a chromosome; in the latter type, the genetic
representation includes an encoding of the ANN topology. Beyond simple MLPs,
the ANN types that have been considered for evolution include the NeuroEvolution
of Augmenting Topologies (NEAT) [655] and the compositional pattern producing
networks [653].

Neuroevolution has found extensive use in the games domain in roles such as
those of evaluating the state-action space of a game, selecting an appropriate ac-
tion, selecting among possible strategies, modeling opponent strategies, generating
content, and modeling player experience [567]. The algorithm’s efficiency, scalabil-
ity, broad applicability, and open-ended learning are a few of the reasons that make
neuroevolution a good general method for many game AI tasks [567].

2.8.1.1 Neuroevolution for Ms Pac-Man

One simple way to implement neuroevolution in Ms Pac-Man is to first design an
ANN that considers the game state as input and output actions for Ms Pac-Man.
The weights of the ANN can be evolved using a typical evolutionary algorithm
and following the steps of neuroevolution as described above. The fitness of each
ANN in the population is obtained by equipping Ms Pac-Man with each ANN in the
population and letting her play the game for a while. The performance of the agent
within that simulation time (e.g., the score) can determine the fitness value of the
ANN. Figure 2.18 illustrates the steps of ANN encoding and fitness assignment in
this hypothetical implementation of neuroevolution in Ms Pac-Man.

2.8.2 TD Learning with ANN Function Approximators

Reinforcement learning typically uses tabular representations to store knowledge.
As mentioned earlier in the RL section, representing knowledge this way may drain
our available computational resources since the size of the look-up table increases
exponentially with respect to the action-state space. The most popular way of ad-
dressing this challenge is to use an ANN as a value (or Q value) approximator,
thereby replacing the table. Doing so makes it possible to apply the algorithm to
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Fig. 2.18 Neuroevolution in Ms Pac-Man. The figure visualizes step 2 (ANN encoding) and step
3 (fitness assignment) of the algorithm for assigning a fitness value to chromosome 2 in the popu-
lation (of size P). In this example, only the weights of the ANN are evolved. The n weights of the
chromosome are first encoded in the ANN and then the ANN is tested in Ms Pac-Man for a number
of simulation steps (or game levels). The result of the game simulation determines the fitness value
( f2) of the ANN.

larger spaces of action-state representations. Further, an ANN as a function approx-
imator of Q, for instance, can handle problems with continuous state spaces which
are infinitely large.

In this section, we outline two milestone examples of algorithms that utilize the
ANN universal approximation capacity for temporal difference learning. The al-
gorithms of TD-Gammon and deep Q network have been applied, respectively, to
master the game of backgammon and play Atari 2600 arcade games at super-human
level. Both algorithms are applicable to any RL task beyond these particular games,
but the games that made them popular are used to describe the algorithms below.

2.8.2.1 TD-Gammon

Arguably one of the most popular success stories of AI in games is that of Tesauro’s
TD-Gammon software that plays backgammon on the grandmaster-level [689]. The
learning algorithm was a hybrid combination of an MLP and a temporal difference
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variant named TD(l ); see Chapter 7 of [672] for further details on the TD(l ) algo-
rithm.

TD-Gammon used a standard multilayer neural network to approximate the value
function. The input of the MLP was a representation of the current state of the board
(Tesauro used 192 inputs) whereas the output of the MLP was the predicted proba-
bility of winning given the current state. Rewards were defined as zero for all board
states except those on which the game was won. The MLP was then trained itera-
tively by playing the game against itself and selecting actions based on the estimated
probability of winning. Each game was treated as a training episode containing a
sequence of positions which were used to train the weights of the MLP by back-
propagating temporal difference errors of its output.

TD-Gammon 0.0 played about 300,000 games against itself and managed to
play as well as the best backgammon computer of its time. While TD-Gammon
0.0 did not win the performance horse race, it gave us a first indication of what is
achievable with RL even without any backgammon expert knowledge integrated in
the AI algorithm. The next iteration of the algorithm (TD-Gammon 1.0) naturally
incorporated expert knowledge through specialized backgammon features that al-
tered the input of the MLP and achieved substantially higher performance. From
that point onwards the number of hidden neurons and the number of self-payed
games determined greatly the version of the algorithm and its resulting capacity.
From TD-Gammon 2.0 (40 hidden neurons) to TD-Gammon 2.1 (80 hidden neu-
rons) the performance of TD-Gammon gradually increased and, with TD Gammon
3.0 (160 hidden neurons), it reached the playing strength of the best human player
in backgammon [689].

2.8.2.2 Deep Q Network

While the combination of RL and ANNs results in very powerful hybrid algorithms,
the performance of the algorithm traditionally depended on the design of the in-
put space for the ANN. As we saw earlier, even the most successful applications
of RL such as the TD-Gammon agent managed to reach human-level playing per-
formance by integrating game specific features in the input space, thereby adding
expert knowledge about the game. It was up until very recently that the combination
of RL and ANNs managed to reach human-level performance in a game without
considering ad-hoc designed features but rather discovering them merely through
learning. A team from Google’s DeepMind [464] developed a reinforcement learn-
ing agent called deep Q network (DQN) that trains a deep convolutional ANN via
Q-learning. DQN managed to reach or exceed human-level playing performance in
29 out of 46 arcade (Atari 2600) games of the Arcade Learning Environment [40] it
was trained on [464].

DQN is inspired by and based upon TD-Gammon since it uses an ANN as the
function approximator for TD learning via gradient descent. As in TD-Gammon, the
gradient is calculated by backpropagating the temporal difference errors. However,
instead of using TD(l ) as the underlying RL algorithm, DQN uses Q-learning. Fur-
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ther, the ANN is not a simple MLP but rather a deep convolutional neural network.
DQN played each game of ALE for a large amount of frames (50 million frames).
This amounts to about 38 days of playing time for each game [464].

The DQN analyses a sequence of four game screens simultaneously and approx-
imates the future game score per each possible action given its current state. In par-
ticular, the DQN uses the pixels from the four most recent game screens as its inputs,
resulting in ANN input size of 84⇥ 84 (screen size in pixels) ⇥4. No other game-
specific knowledge was given to the DQN beyond the screen pixel information. The
architecture used for the convolutional ANN has three hidden layers that yield 32
20⇥20, 64 9⇥9 and 64 7⇥7 feature maps, respectively. The first (low-level) lay-
ers of the DQN process the pixels of the game screen and extract specialized visual
features. The convolutional layers are followed by a fully connected hidden layer
and an output layer. Each hidden layer is followed by a rectifier nolinearity. Given
a game state represented by the network’s input, the outputs of the DQN are the es-
timated optimal action values (optimal Q-values) of the corresponding state-action
pairs. The DQN is trained to approximate the Q-values (the actual score of the game)
by receiving immediate rewards from the game environment. In particular, the re-
ward is +1 if the score increases in between two successive time steps (frames), it
is �1 if the score decreases, and 0 otherwise. DQN uses an e-greedy policy for its
action-selection strategy. It is worth mentioning that, at the time of writing, there
are newer and more efficient implementations of the deep reinforcement learning
concept such as the Asynchronous Advantage Actor-Critic (A3C) algorithm [463].

2.8.2.3 TD Learning with ANN Function Appoximator for Ms Pac-Man

We can envisage a DQN approach for controlling Ms Pac-Man in a similar fashion
to that with which ALE agents were trained [464]. A deep convolutional neural net-
work scans the level image on a pixel-to-pixel basis (see Fig. 2.19). The image goes
through a number of convolution and fully connected layers which eventually feed
the input of an MLP that outputs the four possible actions for Ms Pac-Man (keep
direction, move backwards, turn left, turn right). Once an action is applied, the score
of the game is used as the immediate reward for updating the weights of the deep
network (the convolutional ANN and the MLP). By playing for a sufficient time pe-
riod the controller gathers experience (image snapshots, actions, and corresponding
rewards) which trains the deep ANN to approximate a policy that maximizes the
score for Ms Pac-Man.

2.8.3 Further Reading

For a recent thorough survey on the application of neuroevolution in games the
reader may refer to [567]. For a complete review of neuroevolution please refer to
Floreano et al. [205]. CPPNs and NEAT are covered in detail in [653] and [655]
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Fig. 2.19 A deep Q-learning approach for Ms Pac-Man. Following [464], the network’s first part
contains a set of convolution layers which are followed by rectifier nonlinearities. The final layers
of the DQN we present in this example are fully connected employing ReLUs, as in [464].

respectively. TD-Gammon and DQN are covered in detail in [689] and [464], re-
spectively. Both are also placed within the greater RL field in the upcoming second
edition of [672]. Details about the A3C algorithm can be found in [463] and imple-
mentations of the algorithm can be found directly as part of Tensorflow.

2.9 Summary

This chapter covered the AI methods we feel the reader of this book needs to be
familiar with. We expect, however, that our readers have a basic background in AI
or have completed a course in fundamentals of AI prior to reading this book. Hence,
the algorithms were not covered in detail since the emphasis of this book is on
the application of AI within the domain of games and not on AI per se. On that
basis, we used the game of Ms Pac-Man as the overarching application testbed of
all algorithms throughout this chapter.

The families of algorithms we discussed include traditional ad-hoc behavior au-
thoring methods (such as finite state machines and behavior trees), tree search (such
as best-first, Minimax and Monte Carlo tree search), evolutionary computation (such
as local search and evolutionary algorithms), supervised learning (e.g., neural net-
works, support vector machines and decision trees), reinforcement learning (e.g.,
Q-learning), unsupervised learning (such as clustering and frequent pattern min-
ing), and hybrid algorithms such as evolving artificial neural networks and artificial
neural networks as approximators of expected rewards.

With this chapter we reached the end of the first, introductory, part of the book.
The next part begins with a chapter on the most traditional and widely explored task
of AI in games: playing!
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283. Johanna Höysniemi, Perttu Hämäläinen, Laura Turkki, and Teppo Rouvi. Children’s intuitive
gestures in vision-based action games. Communications of the ACM, 48(1):44–50, 2005.



306 References

284. Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support vector
machines. IEEE Transactions on Neural Networks, 13(2):415–425, 2002.

285. Feng-Hsiung Hsu. Behind Deep Blue: Building the computer that defeated the world chess
champion. Princeton University Press, 2002.

286. Wijnand IJsselsteijn, Karolien Poels, and Y. A. W. De Kort. The game experience question-
naire: Development of a self-report measure to assess player experiences of digital games.
TU Eindhoven, Eindhoven, The Netherlands, 2008.

287. Interactive Data Visualization. SpeedTree, 2010. http://www.speedtree.com/.
288. Aaron Isaksen, Dan Gopstein, Julian Togelius, and Andy Nealen. Discovering unique game

variants. In Computational Creativity and Games Workshop at the 2015 International Con-
ference on Computational Creativity, 2015.

289. Aaron Isaksen, Daniel Gopstein, and Andrew Nealen. Exploring Game Space Using Survival
Analysis. In Proceedings of Foundations of Digital Games (FDG), 2015.

290. Katherine Isbister and Noah Schaffer. Game usability: Advancing the player experience.
CRC Press, 2015.

291. Damian Isla. Handling complexity in the Halo 2 AI. In Game Developers Conference, 2005.
292. Damian Isla and Bruce Blumberg. New challenges for character-based AI for games. In

Proceedings of the AAAI Spring Symposium on AI and Interactive Entertainment, pages 41–
45. AAAI Press, 2002.

293. Susan A. Jackson and Robert C. Eklund. Assessing flow in physical activity: the flow state
scale-2 and dispositional flow scale-2. Journal of Sport & Exercise Psychology, 24(2), 2002.

294. Emil Juul Jacobsen, Rasmus Greve, and Julian Togelius. Monte Mario: platforming with
MCTS. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Com-
putation, pages 293–300. ACM, 2014.

295. Alexander Jaffe, Alex Miller, Erik Andersen, Yun-En Liu, Anna Karlin, and Zoran Popovic.
Evaluating competitive game balance with restricted play. In AIIDE, 2012.

296. Rishabh Jain, Aaron Isaksen, Christoffer Holmgård, and Julian Togelius. Autoencoders for
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